{"title":"核磁共振结构分析中的残余偶极耦合。","authors":"Rebecca S Lipsitz, Nico Tjandra","doi":"10.1146/annurev.biophys.33.110502.140306","DOIUrl":null,"url":null,"abstract":"<p><p>Residual dipolar couplings (RDCs) have recently emerged as a new tool in nuclear magnetic resonance (NMR) with which to study macromolecular structure and function in a solution environment. RDCs are complementary to the more conventional use of NOEs to provide structural information. While NOEs are local-distance restraints, RDCs provide long-range orientational information. RDCs are now widely utilized in structure calculations. Increasingly, they are being used in novel applications to address complex issues in structural biology such as the accurate determination of the global structure of oligonucleotides and the relative orientation of protein domains. This review briefly describes the theory and methods for obtaining RDCs and then describes the range of biological applications where RDCs have been used.</p>","PeriodicalId":8270,"journal":{"name":"Annual review of biophysics and biomolecular structure","volume":"33 ","pages":"387-413"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.biophys.33.110502.140306","citationCount":"157","resultStr":"{\"title\":\"Residual dipolar couplings in NMR structure analysis.\",\"authors\":\"Rebecca S Lipsitz, Nico Tjandra\",\"doi\":\"10.1146/annurev.biophys.33.110502.140306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Residual dipolar couplings (RDCs) have recently emerged as a new tool in nuclear magnetic resonance (NMR) with which to study macromolecular structure and function in a solution environment. RDCs are complementary to the more conventional use of NOEs to provide structural information. While NOEs are local-distance restraints, RDCs provide long-range orientational information. RDCs are now widely utilized in structure calculations. Increasingly, they are being used in novel applications to address complex issues in structural biology such as the accurate determination of the global structure of oligonucleotides and the relative orientation of protein domains. This review briefly describes the theory and methods for obtaining RDCs and then describes the range of biological applications where RDCs have been used.</p>\",\"PeriodicalId\":8270,\"journal\":{\"name\":\"Annual review of biophysics and biomolecular structure\",\"volume\":\"33 \",\"pages\":\"387-413\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev.biophys.33.110502.140306\",\"citationCount\":\"157\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of biophysics and biomolecular structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev.biophys.33.110502.140306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biophysics and biomolecular structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.biophys.33.110502.140306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Residual dipolar couplings in NMR structure analysis.
Residual dipolar couplings (RDCs) have recently emerged as a new tool in nuclear magnetic resonance (NMR) with which to study macromolecular structure and function in a solution environment. RDCs are complementary to the more conventional use of NOEs to provide structural information. While NOEs are local-distance restraints, RDCs provide long-range orientational information. RDCs are now widely utilized in structure calculations. Increasingly, they are being used in novel applications to address complex issues in structural biology such as the accurate determination of the global structure of oligonucleotides and the relative orientation of protein domains. This review briefly describes the theory and methods for obtaining RDCs and then describes the range of biological applications where RDCs have been used.