{"title":"人水肿性大脑皮层树突的形态学变化。透射电镜研究。","authors":"O J Castejón, G J Arismendi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The structural pathology of dendritic processes has been examined in 38 patients with clinical diagnosis of brain trauma, brain tumours and congenital malformations. Cortical biopsies of frontal, parietal, temporal and occipital cortex were conventionally processed for transmission electron microscopy. Isolated ultrathin sections and montages of electron micrographs were used to trace the intracortical dendritic course. Swollen and beaded dendrites were observed in all cases examined, which exhibited fragmentation of limiting plasma membrane and cytoskeletal structures. The swollen dendrites showed vacuolization, dense residual bodies, enlarged rough and smooth endoplasmic reticulum, edematous clear and dark mitochondria, a decreased synaptic density of shaft synapses, edematous and dystrophic changes of spine apparatus and a partial loss of dendritic spines. A wide variety of dendritic spine shapes were observed: mushroom-type, stubby, gem-like filiform spine, and megaspine, considered as spine dysgenesis in the congenital malformations and spine pathology and spine plasticity in brain traumatic injuries and brain tumours. The multifactorial processes associated with brain edema and brain ischemia, such as calcium overload, activation of calcium-dependent proteolytic enzymes, protein aggregation, glutamate-induced neurotoxicity, release of lysosomal enzymes, deficit of ATP, stress oxidative and lipid peroxidation have been considered in relation with the pathological dendritic changes. Dendrotoxicity due to brain edema and brain ischemia seems to be the fundamental pathogenetic mechanism.</p>","PeriodicalId":17136,"journal":{"name":"Journal of submicroscopic cytology and pathology","volume":"35 4","pages":"395-413"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological changes of dendrites in the human edematous cerebral cortex. A transmission electron microscopic study.\",\"authors\":\"O J Castejón, G J Arismendi\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The structural pathology of dendritic processes has been examined in 38 patients with clinical diagnosis of brain trauma, brain tumours and congenital malformations. Cortical biopsies of frontal, parietal, temporal and occipital cortex were conventionally processed for transmission electron microscopy. Isolated ultrathin sections and montages of electron micrographs were used to trace the intracortical dendritic course. Swollen and beaded dendrites were observed in all cases examined, which exhibited fragmentation of limiting plasma membrane and cytoskeletal structures. The swollen dendrites showed vacuolization, dense residual bodies, enlarged rough and smooth endoplasmic reticulum, edematous clear and dark mitochondria, a decreased synaptic density of shaft synapses, edematous and dystrophic changes of spine apparatus and a partial loss of dendritic spines. A wide variety of dendritic spine shapes were observed: mushroom-type, stubby, gem-like filiform spine, and megaspine, considered as spine dysgenesis in the congenital malformations and spine pathology and spine plasticity in brain traumatic injuries and brain tumours. The multifactorial processes associated with brain edema and brain ischemia, such as calcium overload, activation of calcium-dependent proteolytic enzymes, protein aggregation, glutamate-induced neurotoxicity, release of lysosomal enzymes, deficit of ATP, stress oxidative and lipid peroxidation have been considered in relation with the pathological dendritic changes. Dendrotoxicity due to brain edema and brain ischemia seems to be the fundamental pathogenetic mechanism.</p>\",\"PeriodicalId\":17136,\"journal\":{\"name\":\"Journal of submicroscopic cytology and pathology\",\"volume\":\"35 4\",\"pages\":\"395-413\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of submicroscopic cytology and pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of submicroscopic cytology and pathology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Morphological changes of dendrites in the human edematous cerebral cortex. A transmission electron microscopic study.
The structural pathology of dendritic processes has been examined in 38 patients with clinical diagnosis of brain trauma, brain tumours and congenital malformations. Cortical biopsies of frontal, parietal, temporal and occipital cortex were conventionally processed for transmission electron microscopy. Isolated ultrathin sections and montages of electron micrographs were used to trace the intracortical dendritic course. Swollen and beaded dendrites were observed in all cases examined, which exhibited fragmentation of limiting plasma membrane and cytoskeletal structures. The swollen dendrites showed vacuolization, dense residual bodies, enlarged rough and smooth endoplasmic reticulum, edematous clear and dark mitochondria, a decreased synaptic density of shaft synapses, edematous and dystrophic changes of spine apparatus and a partial loss of dendritic spines. A wide variety of dendritic spine shapes were observed: mushroom-type, stubby, gem-like filiform spine, and megaspine, considered as spine dysgenesis in the congenital malformations and spine pathology and spine plasticity in brain traumatic injuries and brain tumours. The multifactorial processes associated with brain edema and brain ischemia, such as calcium overload, activation of calcium-dependent proteolytic enzymes, protein aggregation, glutamate-induced neurotoxicity, release of lysosomal enzymes, deficit of ATP, stress oxidative and lipid peroxidation have been considered in relation with the pathological dendritic changes. Dendrotoxicity due to brain edema and brain ischemia seems to be the fundamental pathogenetic mechanism.