Giulio Gianese, Francesco Bossa, Stefano Pascarella
{"title":"用概率曲线预测溶剂可及性的改进。","authors":"Giulio Gianese, Francesco Bossa, Stefano Pascarella","doi":"10.1093/protein/gzg139","DOIUrl":null,"url":null,"abstract":"<p><p>The capability of predicting folding and conformation of a protein from its primary structure is probably one of the main goals of modern biology. An accurate prediction of solvent accessibility is an intermediate step along this way. A new method for predicting solvent accessibility from single sequence and multiple alignment data is described. The method is based on probability profiles calculated on an amino acid sequence centred on the residue whose accessibility has to be predicted. A profile is constructed for each exposure category considered so as to calculate the probability of a sequence being generated by the different profiles. Prediction accuracy was tested on a variety of protein sets with two- and three-state models. Different thresholds were used according to those adopted by the authors proposing the data sets. The prediction accuracy is significantly improved over existing methods.</p>","PeriodicalId":20902,"journal":{"name":"Protein engineering","volume":"16 12","pages":"987-92"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzg139","citationCount":"42","resultStr":"{\"title\":\"Improvement in prediction of solvent accessibility by probability profiles.\",\"authors\":\"Giulio Gianese, Francesco Bossa, Stefano Pascarella\",\"doi\":\"10.1093/protein/gzg139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The capability of predicting folding and conformation of a protein from its primary structure is probably one of the main goals of modern biology. An accurate prediction of solvent accessibility is an intermediate step along this way. A new method for predicting solvent accessibility from single sequence and multiple alignment data is described. The method is based on probability profiles calculated on an amino acid sequence centred on the residue whose accessibility has to be predicted. A profile is constructed for each exposure category considered so as to calculate the probability of a sequence being generated by the different profiles. Prediction accuracy was tested on a variety of protein sets with two- and three-state models. Different thresholds were used according to those adopted by the authors proposing the data sets. The prediction accuracy is significantly improved over existing methods.</p>\",\"PeriodicalId\":20902,\"journal\":{\"name\":\"Protein engineering\",\"volume\":\"16 12\",\"pages\":\"987-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/protein/gzg139\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzg139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzg139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improvement in prediction of solvent accessibility by probability profiles.
The capability of predicting folding and conformation of a protein from its primary structure is probably one of the main goals of modern biology. An accurate prediction of solvent accessibility is an intermediate step along this way. A new method for predicting solvent accessibility from single sequence and multiple alignment data is described. The method is based on probability profiles calculated on an amino acid sequence centred on the residue whose accessibility has to be predicted. A profile is constructed for each exposure category considered so as to calculate the probability of a sequence being generated by the different profiles. Prediction accuracy was tested on a variety of protein sets with two- and three-state models. Different thresholds were used according to those adopted by the authors proposing the data sets. The prediction accuracy is significantly improved over existing methods.