{"title":"表面磁性原子的自旋退相干","authors":"F. Delgado , J. Fernández-Rossier","doi":"10.1016/j.progsurf.2016.12.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>We review the problem of spin decoherence of magnetic atoms deposited on a surface. Recent breakthroughs in scanning tunnelling microscopy (STM) make it possible to probe the spin dynamics of individual atoms, either isolated or integrated in nanoengineered spin structures. Transport pump and probe techniques with spin polarized tips permit measuring the spin relaxation time </span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span><span>, while novel demonstration of electrically driven STM single spin resonance has provided a direct measurement of the spin coherence time </span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span><span> of an individual magnetic adatom<span>. Here we address the problem of spin decoherence from the theoretical point of view. First we provide a short general overview of decoherence in open quantum systems and we discuss with some detail ambiguities that arise in the case of degenerate spectra, relevant for magnetic atoms. Second, we address the physical mechanisms that allows probing the spin coherence of magnetic atoms on surfaces. Third, we discuss the main spin decoherence mechanisms at work on a surface, most notably, Kondo interaction, but also spin–phonon coupling and dephasing by Johnson noise. Finally, we briefly discuss the implications in the broader context of quantum technologies.</span></span></p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"92 1","pages":"Pages 40-82"},"PeriodicalIF":8.7000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2016.12.001","citationCount":"51","resultStr":"{\"title\":\"Spin decoherence of magnetic atoms on surfaces\",\"authors\":\"F. Delgado , J. Fernández-Rossier\",\"doi\":\"10.1016/j.progsurf.2016.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We review the problem of spin decoherence of magnetic atoms deposited on a surface. Recent breakthroughs in scanning tunnelling microscopy (STM) make it possible to probe the spin dynamics of individual atoms, either isolated or integrated in nanoengineered spin structures. Transport pump and probe techniques with spin polarized tips permit measuring the spin relaxation time </span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span><span>, while novel demonstration of electrically driven STM single spin resonance has provided a direct measurement of the spin coherence time </span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span><span> of an individual magnetic adatom<span>. Here we address the problem of spin decoherence from the theoretical point of view. First we provide a short general overview of decoherence in open quantum systems and we discuss with some detail ambiguities that arise in the case of degenerate spectra, relevant for magnetic atoms. Second, we address the physical mechanisms that allows probing the spin coherence of magnetic atoms on surfaces. Third, we discuss the main spin decoherence mechanisms at work on a surface, most notably, Kondo interaction, but also spin–phonon coupling and dephasing by Johnson noise. Finally, we briefly discuss the implications in the broader context of quantum technologies.</span></span></p></div>\",\"PeriodicalId\":416,\"journal\":{\"name\":\"Progress in Surface Science\",\"volume\":\"92 1\",\"pages\":\"Pages 40-82\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsurf.2016.12.001\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Surface Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079681616300351\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681616300351","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
We review the problem of spin decoherence of magnetic atoms deposited on a surface. Recent breakthroughs in scanning tunnelling microscopy (STM) make it possible to probe the spin dynamics of individual atoms, either isolated or integrated in nanoengineered spin structures. Transport pump and probe techniques with spin polarized tips permit measuring the spin relaxation time , while novel demonstration of electrically driven STM single spin resonance has provided a direct measurement of the spin coherence time of an individual magnetic adatom. Here we address the problem of spin decoherence from the theoretical point of view. First we provide a short general overview of decoherence in open quantum systems and we discuss with some detail ambiguities that arise in the case of degenerate spectra, relevant for magnetic atoms. Second, we address the physical mechanisms that allows probing the spin coherence of magnetic atoms on surfaces. Third, we discuss the main spin decoherence mechanisms at work on a surface, most notably, Kondo interaction, but also spin–phonon coupling and dephasing by Johnson noise. Finally, we briefly discuss the implications in the broader context of quantum technologies.
期刊介绍:
Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.