A Rodríguez-Acosta, J Vega, H J Finol, M Pulido-Mendez
{"title":"蜜蜂毒液毒性作用对肾上腺皮质超微结构的影响。","authors":"A Rodríguez-Acosta, J Vega, H J Finol, M Pulido-Mendez","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Bee accidents incidence is underestimated because many people do not consult to the physicians. Here it is described for the first time the severe mice adrenal gland damage induced by Apis mellifera venom. Biopsy specimens were obtained from mice adrenal gland and after sample preparation observed in Hitachi H-7100 electron microscope. In this work the ultrastructural analysis showed, 6 h after injection, a non homogeneous smooth endothelial reticulum, and in some places loss of plasma membrane. The fenestrae spaces were bigger and detritus in the capillary lumen were observed. Erythrocytes were seen in a cortical cell. After 48 h of venom injection, expanded fenestrae were observed. Capillary basal membrane was interrupted. Myelin-like figures and autophagic vacuoles were noticed. Swollen smooth endoplasmic reticulum elements and endothelial unfolding to the light were seen. Moreover, swollen Golgi and mitochondria were observed, in some places forming myelinic-like figures. At 144 h after venom injection, widened spaces were noticed in capillary fenestrae. Cellular section showed swollen and lost smooth endoplasmic reticulum elements. Smooth endoplasmic reticulum tubules disappearance suggested non steroidogenesis. In conclusion, we suggest that some of the bee envenoming human clinical manifestations, as is observed in mice, are determined by suprarenal gland damage produced by toxins present in this venom.</p>","PeriodicalId":17136,"journal":{"name":"Journal of submicroscopic cytology and pathology","volume":"35 3","pages":"309-14"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrastructural alterations in cortex of adrenal gland caused by the toxic effect of bee (Apis mellifera) venom.\",\"authors\":\"A Rodríguez-Acosta, J Vega, H J Finol, M Pulido-Mendez\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bee accidents incidence is underestimated because many people do not consult to the physicians. Here it is described for the first time the severe mice adrenal gland damage induced by Apis mellifera venom. Biopsy specimens were obtained from mice adrenal gland and after sample preparation observed in Hitachi H-7100 electron microscope. In this work the ultrastructural analysis showed, 6 h after injection, a non homogeneous smooth endothelial reticulum, and in some places loss of plasma membrane. The fenestrae spaces were bigger and detritus in the capillary lumen were observed. Erythrocytes were seen in a cortical cell. After 48 h of venom injection, expanded fenestrae were observed. Capillary basal membrane was interrupted. Myelin-like figures and autophagic vacuoles were noticed. Swollen smooth endoplasmic reticulum elements and endothelial unfolding to the light were seen. Moreover, swollen Golgi and mitochondria were observed, in some places forming myelinic-like figures. At 144 h after venom injection, widened spaces were noticed in capillary fenestrae. Cellular section showed swollen and lost smooth endoplasmic reticulum elements. Smooth endoplasmic reticulum tubules disappearance suggested non steroidogenesis. In conclusion, we suggest that some of the bee envenoming human clinical manifestations, as is observed in mice, are determined by suprarenal gland damage produced by toxins present in this venom.</p>\",\"PeriodicalId\":17136,\"journal\":{\"name\":\"Journal of submicroscopic cytology and pathology\",\"volume\":\"35 3\",\"pages\":\"309-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of submicroscopic cytology and pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of submicroscopic cytology and pathology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrastructural alterations in cortex of adrenal gland caused by the toxic effect of bee (Apis mellifera) venom.
Bee accidents incidence is underestimated because many people do not consult to the physicians. Here it is described for the first time the severe mice adrenal gland damage induced by Apis mellifera venom. Biopsy specimens were obtained from mice adrenal gland and after sample preparation observed in Hitachi H-7100 electron microscope. In this work the ultrastructural analysis showed, 6 h after injection, a non homogeneous smooth endothelial reticulum, and in some places loss of plasma membrane. The fenestrae spaces were bigger and detritus in the capillary lumen were observed. Erythrocytes were seen in a cortical cell. After 48 h of venom injection, expanded fenestrae were observed. Capillary basal membrane was interrupted. Myelin-like figures and autophagic vacuoles were noticed. Swollen smooth endoplasmic reticulum elements and endothelial unfolding to the light were seen. Moreover, swollen Golgi and mitochondria were observed, in some places forming myelinic-like figures. At 144 h after venom injection, widened spaces were noticed in capillary fenestrae. Cellular section showed swollen and lost smooth endoplasmic reticulum elements. Smooth endoplasmic reticulum tubules disappearance suggested non steroidogenesis. In conclusion, we suggest that some of the bee envenoming human clinical manifestations, as is observed in mice, are determined by suprarenal gland damage produced by toxins present in this venom.