控制炎症反应基因的表达。

Jeremy Saklatvala, Jonathan Dean, Andrew Clark
{"title":"控制炎症反应基因的表达。","authors":"Jeremy Saklatvala,&nbsp;Jonathan Dean,&nbsp;Andrew Clark","doi":"10.1042/bss0700095","DOIUrl":null,"url":null,"abstract":"<p><p>The expression of genes involved in the inflammatory response is controlled both transcriptionally and post-transcriptionally. Primary inflammatory stimuli, such as microbial products and the cytokines interleukin-1 (IL-1) and tumour necrosis factor alpha (TNF alpha), act through receptors of either the Toll and IL-1 receptor (TIR) family or the TNF receptor family. These cause changes in gene expression by activating four major intracellular signalling pathways that are cascades of protein kinases: namely the three mitogen-activated protein kinase (MAPK) pathways, and the pathway leading to activation of the transcription factor nuclear factor kappa B (NF kappa B). The pathways directly activate and induce the expression of a limited set of transcription factors which promote the transcription of inflammatory response genes. Many of the mRNAs are unstable, and are stabilized by the p38 MAPK pathway. Instability is mediated by clusters of the AUUUA motif in the 3' untranslated regions of the mRNAs. Control of mRNA stability provides a means of increasing the amplitude of a response and allows rapid adjustment of mRNA levels. Not all mRNAs stabilized by p38 contain AUUUA clusters; for example, matrix metalloproteinase-1 and -3 mRNAs lack these clusters, but are stabilized. Inflammatory gene expression is inhibited by glucocorticoids. These suppress MAPK signalling by inducing a MAPK phosphatase. This may be a significant mechanism additional to that by which the glucocorticoid receptor interferes with transcription factors.</p>","PeriodicalId":55383,"journal":{"name":"Biochemical Society Symposia","volume":" 70","pages":"95-106"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"136","resultStr":"{\"title\":\"Control of the expression of inflammatory response genes.\",\"authors\":\"Jeremy Saklatvala,&nbsp;Jonathan Dean,&nbsp;Andrew Clark\",\"doi\":\"10.1042/bss0700095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The expression of genes involved in the inflammatory response is controlled both transcriptionally and post-transcriptionally. Primary inflammatory stimuli, such as microbial products and the cytokines interleukin-1 (IL-1) and tumour necrosis factor alpha (TNF alpha), act through receptors of either the Toll and IL-1 receptor (TIR) family or the TNF receptor family. These cause changes in gene expression by activating four major intracellular signalling pathways that are cascades of protein kinases: namely the three mitogen-activated protein kinase (MAPK) pathways, and the pathway leading to activation of the transcription factor nuclear factor kappa B (NF kappa B). The pathways directly activate and induce the expression of a limited set of transcription factors which promote the transcription of inflammatory response genes. Many of the mRNAs are unstable, and are stabilized by the p38 MAPK pathway. Instability is mediated by clusters of the AUUUA motif in the 3' untranslated regions of the mRNAs. Control of mRNA stability provides a means of increasing the amplitude of a response and allows rapid adjustment of mRNA levels. Not all mRNAs stabilized by p38 contain AUUUA clusters; for example, matrix metalloproteinase-1 and -3 mRNAs lack these clusters, but are stabilized. Inflammatory gene expression is inhibited by glucocorticoids. These suppress MAPK signalling by inducing a MAPK phosphatase. This may be a significant mechanism additional to that by which the glucocorticoid receptor interferes with transcription factors.</p>\",\"PeriodicalId\":55383,\"journal\":{\"name\":\"Biochemical Society Symposia\",\"volume\":\" 70\",\"pages\":\"95-106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"136\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Society Symposia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1042/bss0700095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society Symposia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/bss0700095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 136

摘要

参与炎症反应的基因的表达受到转录和转录后的控制。主要的炎症刺激,如微生物产物和细胞因子白介素-1 (IL-1)和肿瘤坏死因子α (TNF - α),通过Toll和IL-1受体(TIR)家族或TNF受体家族的受体起作用。它们通过激活蛋白激酶级联的四种主要细胞内信号通路引起基因表达的变化:即三种丝裂原活化蛋白激酶(MAPK)通路和导致转录因子核因子κ B (NF κ B)激活的通路。这些通路直接激活和诱导有限的转录因子的表达,促进炎症反应基因的转录。许多mrna是不稳定的,并通过p38 MAPK途径稳定。不稳定性是由mrna 3'非翻译区域的AUUUA基序集群介导的。控制mRNA的稳定性提供了一种增加响应幅度的方法,并允许快速调整mRNA水平。并非所有由p38稳定的mrna都含有AUUUA簇;例如,基质金属蛋白酶1和-3 mrna缺乏这些簇,但它们是稳定的。糖皮质激素可抑制炎症基因表达。它们通过诱导MAPK磷酸酶抑制MAPK信号传导。这可能是糖皮质激素受体干扰转录因子的另一个重要机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of the expression of inflammatory response genes.

The expression of genes involved in the inflammatory response is controlled both transcriptionally and post-transcriptionally. Primary inflammatory stimuli, such as microbial products and the cytokines interleukin-1 (IL-1) and tumour necrosis factor alpha (TNF alpha), act through receptors of either the Toll and IL-1 receptor (TIR) family or the TNF receptor family. These cause changes in gene expression by activating four major intracellular signalling pathways that are cascades of protein kinases: namely the three mitogen-activated protein kinase (MAPK) pathways, and the pathway leading to activation of the transcription factor nuclear factor kappa B (NF kappa B). The pathways directly activate and induce the expression of a limited set of transcription factors which promote the transcription of inflammatory response genes. Many of the mRNAs are unstable, and are stabilized by the p38 MAPK pathway. Instability is mediated by clusters of the AUUUA motif in the 3' untranslated regions of the mRNAs. Control of mRNA stability provides a means of increasing the amplitude of a response and allows rapid adjustment of mRNA levels. Not all mRNAs stabilized by p38 contain AUUUA clusters; for example, matrix metalloproteinase-1 and -3 mRNAs lack these clusters, but are stabilized. Inflammatory gene expression is inhibited by glucocorticoids. These suppress MAPK signalling by inducing a MAPK phosphatase. This may be a significant mechanism additional to that by which the glucocorticoid receptor interferes with transcription factors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信