半胱天冬酶激活。

Kelly M Boatright, Guy S Salvesen
{"title":"半胱天冬酶激活。","authors":"Kelly M Boatright,&nbsp;Guy S Salvesen","doi":"10.1042/bss0700233","DOIUrl":null,"url":null,"abstract":"<p><p>Caspase activation is the 'point of no return' commitment to cell death. Synthesized as inactive zymogens, it is essential that the caspases remain inactive until the death signal is received. It is known for the downstream executioner caspases-3 and -7 that the activation event is proteolytic cleavage, and this had been assumed to apply to the initiator caspases as well. However, recent studies conducted on caspases-2, -8 and -9 have challenged this tenet of caspase activation. In this review we focus on the molecular details of caspase activation, with emphasis on recent work that provides a pleasing explanation for the differential requirements for the activation of executioner and initiator caspases.</p>","PeriodicalId":55383,"journal":{"name":"Biochemical Society Symposia","volume":" 70","pages":"233-42"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caspase activation.\",\"authors\":\"Kelly M Boatright,&nbsp;Guy S Salvesen\",\"doi\":\"10.1042/bss0700233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Caspase activation is the 'point of no return' commitment to cell death. Synthesized as inactive zymogens, it is essential that the caspases remain inactive until the death signal is received. It is known for the downstream executioner caspases-3 and -7 that the activation event is proteolytic cleavage, and this had been assumed to apply to the initiator caspases as well. However, recent studies conducted on caspases-2, -8 and -9 have challenged this tenet of caspase activation. In this review we focus on the molecular details of caspase activation, with emphasis on recent work that provides a pleasing explanation for the differential requirements for the activation of executioner and initiator caspases.</p>\",\"PeriodicalId\":55383,\"journal\":{\"name\":\"Biochemical Society Symposia\",\"volume\":\" 70\",\"pages\":\"233-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Society Symposia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1042/bss0700233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society Symposia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/bss0700233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

半胱天冬酶的激活是细胞死亡的“不归路”。半胱天冬酶作为无活性酶原合成,在接收到死亡信号之前保持无活性是至关重要的。众所周知,下游的刽子手caspases-3和-7的激活事件是蛋白水解裂解,这也被认为适用于启动caspases。然而,最近对caspase -2、-8和-9的研究对caspase活化的这一原则提出了挑战。在这篇综述中,我们将重点介绍半胱天冬酶激活的分子细节,重点介绍最近的研究,这些研究为半胱天冬酶的执行子和引发子激活的不同要求提供了令人满意的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Caspase activation.

Caspase activation is the 'point of no return' commitment to cell death. Synthesized as inactive zymogens, it is essential that the caspases remain inactive until the death signal is received. It is known for the downstream executioner caspases-3 and -7 that the activation event is proteolytic cleavage, and this had been assumed to apply to the initiator caspases as well. However, recent studies conducted on caspases-2, -8 and -9 have challenged this tenet of caspase activation. In this review we focus on the molecular details of caspase activation, with emphasis on recent work that provides a pleasing explanation for the differential requirements for the activation of executioner and initiator caspases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信