Ben Zhuo Lu, Bao Han Wang, Wei Zu Chen, Cun Xin Wang
{"title":"一种新的蛋白质折叠预测计算方法。","authors":"Ben Zhuo Lu, Bao Han Wang, Wei Zu Chen, Cun Xin Wang","doi":"10.1093/protein/gzg085","DOIUrl":null,"url":null,"abstract":"<p><p>An effective and fast minimization approach is proposed for the prediction of protein folding, in which the 'relative entropy' is used as a minimization function and the off-lattice model is used. In this approach, we only use the information of distances between the consecutive Calpha atoms along the peptide chain and a generalized form of the contact potential for 20 types of amino acids. Tests of the algorithm are performed on the real proteins. The root mean square deviations of the structures of eight folded target proteins versus the native structures are in a reasonable range. In principle, this method is an improvement on the energy minimization approach.</p>","PeriodicalId":20902,"journal":{"name":"Protein engineering","volume":"16 9","pages":"659-63"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzg085","citationCount":"7","resultStr":"{\"title\":\"A new computational approach for real protein folding prediction.\",\"authors\":\"Ben Zhuo Lu, Bao Han Wang, Wei Zu Chen, Cun Xin Wang\",\"doi\":\"10.1093/protein/gzg085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An effective and fast minimization approach is proposed for the prediction of protein folding, in which the 'relative entropy' is used as a minimization function and the off-lattice model is used. In this approach, we only use the information of distances between the consecutive Calpha atoms along the peptide chain and a generalized form of the contact potential for 20 types of amino acids. Tests of the algorithm are performed on the real proteins. The root mean square deviations of the structures of eight folded target proteins versus the native structures are in a reasonable range. In principle, this method is an improvement on the energy minimization approach.</p>\",\"PeriodicalId\":20902,\"journal\":{\"name\":\"Protein engineering\",\"volume\":\"16 9\",\"pages\":\"659-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/protein/gzg085\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzg085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzg085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new computational approach for real protein folding prediction.
An effective and fast minimization approach is proposed for the prediction of protein folding, in which the 'relative entropy' is used as a minimization function and the off-lattice model is used. In this approach, we only use the information of distances between the consecutive Calpha atoms along the peptide chain and a generalized form of the contact potential for 20 types of amino acids. Tests of the algorithm are performed on the real proteins. The root mean square deviations of the structures of eight folded target proteins versus the native structures are in a reasonable range. In principle, this method is an improvement on the energy minimization approach.