Giselle C. Silva , Nakédia M.F. Carvalho , Adolfo Horn Jr. , Elizabeth R. Lachter , Octavio A.C. Antunes
{"title":"单核铁(III)配合物催化过氧化氢氧化芳香族化合物的研究","authors":"Giselle C. Silva , Nakédia M.F. Carvalho , Adolfo Horn Jr. , Elizabeth R. Lachter , Octavio A.C. Antunes","doi":"10.1016/j.molcata.2016.08.037","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, four mononuclear iron(III) complexes containing BMPA (BMPA<!--> <!-->=<!--> <!-->bis-(2-pyridylmethyl)amine) and derivative ligands, have been studied as catalyst in toluene oxidation, at 25<!--> <strong>°</strong>C and 50<!--> <strong>°</strong>C, using hydrogen peroxide as oxidant and acetonitrile as solvent. All catalysts were able to oxidize toluene with satisfactory yields, producing <em>o</em>-, <em>m</em>-, <em>p</em>-cresols, benzaldehyde and benzyl alcohol, as main products, and traces of 2-methylbenzoquinone and benzoic acid. The catalyst [Fe(BMPA)Cl<sub>3</sub>] presented the most promising results, reaching yields up to 30.2% at 50<!--> <strong>°</strong>C after 24<!--> <!-->h. Furthermore, [Fe(BMPA)Cl<sub>3</sub>] was applied in the oxidation of other aromatic compounds as benzene, ethylbenzene, cumene, <em>n</em>-propylbenzene, <em>p</em>-xylene and anisole. The reaction with H<sub>2</sub>O<sub>2</sub> was monitored by electronic UV–vis spectroscopy in the presence and absence of toluene and its oxidation products, as well as by ESI-(+)-MS/Q-TOF mass spectrometry, in order to provide some information about the reaction mechanism.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 564-571"},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.08.037","citationCount":"31","resultStr":"{\"title\":\"Oxidation of aromatic compounds by hydrogen peroxide catalyzed by mononuclear iron(III) complexes\",\"authors\":\"Giselle C. Silva , Nakédia M.F. Carvalho , Adolfo Horn Jr. , Elizabeth R. Lachter , Octavio A.C. Antunes\",\"doi\":\"10.1016/j.molcata.2016.08.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present work, four mononuclear iron(III) complexes containing BMPA (BMPA<!--> <!-->=<!--> <!-->bis-(2-pyridylmethyl)amine) and derivative ligands, have been studied as catalyst in toluene oxidation, at 25<!--> <strong>°</strong>C and 50<!--> <strong>°</strong>C, using hydrogen peroxide as oxidant and acetonitrile as solvent. All catalysts were able to oxidize toluene with satisfactory yields, producing <em>o</em>-, <em>m</em>-, <em>p</em>-cresols, benzaldehyde and benzyl alcohol, as main products, and traces of 2-methylbenzoquinone and benzoic acid. The catalyst [Fe(BMPA)Cl<sub>3</sub>] presented the most promising results, reaching yields up to 30.2% at 50<!--> <strong>°</strong>C after 24<!--> <!-->h. Furthermore, [Fe(BMPA)Cl<sub>3</sub>] was applied in the oxidation of other aromatic compounds as benzene, ethylbenzene, cumene, <em>n</em>-propylbenzene, <em>p</em>-xylene and anisole. The reaction with H<sub>2</sub>O<sub>2</sub> was monitored by electronic UV–vis spectroscopy in the presence and absence of toluene and its oxidation products, as well as by ESI-(+)-MS/Q-TOF mass spectrometry, in order to provide some information about the reaction mechanism.</p></div>\",\"PeriodicalId\":370,\"journal\":{\"name\":\"Journal of Molecular Catalysis A: Chemical\",\"volume\":\"426 \",\"pages\":\"Pages 564-571\"},\"PeriodicalIF\":5.0620,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcata.2016.08.037\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis A: Chemical\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381116916303727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381116916303727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
摘要
本文研究了含BMPA (BMPA =双-(2-吡啶基甲基)胺)及其衍生物配体的四种单核铁(III)配合物在25℃和50℃下,以过氧化氢为氧化剂,乙腈为溶剂,作为甲苯氧化的催化剂。所有催化剂均能以满意的产率氧化甲苯,主要产物为邻甲酚、间甲酚、对甲酚、苯甲醛和苯甲醇,以及痕量的2-甲基苯醌和苯甲酸。催化剂[Fe(BMPA)Cl3]在50℃反应24 h后的产率可达30.2%。此外,[Fe(BMPA)Cl3]还应用于苯、乙苯、异丙苯、正丙苯、对二甲苯和苯甲醚等芳香族化合物的氧化。采用电子紫外-可见光谱法和ESI-(+)- ms /Q-TOF质谱法对反应过程进行了监测,对反应机理进行了初步探讨。
Oxidation of aromatic compounds by hydrogen peroxide catalyzed by mononuclear iron(III) complexes
In the present work, four mononuclear iron(III) complexes containing BMPA (BMPA = bis-(2-pyridylmethyl)amine) and derivative ligands, have been studied as catalyst in toluene oxidation, at 25 °C and 50 °C, using hydrogen peroxide as oxidant and acetonitrile as solvent. All catalysts were able to oxidize toluene with satisfactory yields, producing o-, m-, p-cresols, benzaldehyde and benzyl alcohol, as main products, and traces of 2-methylbenzoquinone and benzoic acid. The catalyst [Fe(BMPA)Cl3] presented the most promising results, reaching yields up to 30.2% at 50 °C after 24 h. Furthermore, [Fe(BMPA)Cl3] was applied in the oxidation of other aromatic compounds as benzene, ethylbenzene, cumene, n-propylbenzene, p-xylene and anisole. The reaction with H2O2 was monitored by electronic UV–vis spectroscopy in the presence and absence of toluene and its oxidation products, as well as by ESI-(+)-MS/Q-TOF mass spectrometry, in order to provide some information about the reaction mechanism.
期刊介绍:
The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.