Akshai Kumar , Jason D. Hackenberg , Gao Zhuo , Andrew M. Steffens , Oleg Mironov , Robert J. Saxton , Alan S. Goldman
{"title":"钳形连接铱配合物催化戊烷转移脱氢反应中高收率的胡椒烯","authors":"Akshai Kumar , Jason D. Hackenberg , Gao Zhuo , Andrew M. Steffens , Oleg Mironov , Robert J. Saxton , Alan S. Goldman","doi":"10.1016/j.molcata.2016.10.019","DOIUrl":null,"url":null,"abstract":"<div><p>Conjugated dienes are desirable reagents for several important applications. We report that sterically uncrowded PCP-pincer iridium complexes, including precursors of (<em><sup>i</sup></em><sup>Pr4</sup>PCP)Ir and (<sup>Me2<em>t</em>Bu2</sup>PCP)Ir, catalyze the transfer dehydrogenation of pentane, using high concentrations of <em>t</em>‐butylethylene (TBE) as hydrogen acceptor, to give high yields of 1,3-pentadiene (piperylene). Piperylene yields are ca. 100-fold greater than those obtained with the more widely used di(t‐butyl)phosphino substituted pincer iridium catalysts. This represents, to our knowledge, the first reported high-yield synthesis of dienes via the dehydrogenation of <em>n</em>-alkane using molecular catalysts. To our knowledge, this is the first reported high-yield synthesis of dienes achieved via the dehydrogenation of n-alkane using molecular catalysts.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 368-375"},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.10.019","citationCount":"12","resultStr":"{\"title\":\"High yields of piperylene in the transfer dehydrogenation of pentane catalyzed by pincer-ligated iridium complexes\",\"authors\":\"Akshai Kumar , Jason D. Hackenberg , Gao Zhuo , Andrew M. Steffens , Oleg Mironov , Robert J. Saxton , Alan S. Goldman\",\"doi\":\"10.1016/j.molcata.2016.10.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conjugated dienes are desirable reagents for several important applications. We report that sterically uncrowded PCP-pincer iridium complexes, including precursors of (<em><sup>i</sup></em><sup>Pr4</sup>PCP)Ir and (<sup>Me2<em>t</em>Bu2</sup>PCP)Ir, catalyze the transfer dehydrogenation of pentane, using high concentrations of <em>t</em>‐butylethylene (TBE) as hydrogen acceptor, to give high yields of 1,3-pentadiene (piperylene). Piperylene yields are ca. 100-fold greater than those obtained with the more widely used di(t‐butyl)phosphino substituted pincer iridium catalysts. This represents, to our knowledge, the first reported high-yield synthesis of dienes via the dehydrogenation of <em>n</em>-alkane using molecular catalysts. To our knowledge, this is the first reported high-yield synthesis of dienes achieved via the dehydrogenation of n-alkane using molecular catalysts.</p></div>\",\"PeriodicalId\":370,\"journal\":{\"name\":\"Journal of Molecular Catalysis A: Chemical\",\"volume\":\"426 \",\"pages\":\"Pages 368-375\"},\"PeriodicalIF\":5.0620,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcata.2016.10.019\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis A: Chemical\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381116916304411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381116916304411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High yields of piperylene in the transfer dehydrogenation of pentane catalyzed by pincer-ligated iridium complexes
Conjugated dienes are desirable reagents for several important applications. We report that sterically uncrowded PCP-pincer iridium complexes, including precursors of (iPr4PCP)Ir and (Me2tBu2PCP)Ir, catalyze the transfer dehydrogenation of pentane, using high concentrations of t‐butylethylene (TBE) as hydrogen acceptor, to give high yields of 1,3-pentadiene (piperylene). Piperylene yields are ca. 100-fold greater than those obtained with the more widely used di(t‐butyl)phosphino substituted pincer iridium catalysts. This represents, to our knowledge, the first reported high-yield synthesis of dienes via the dehydrogenation of n-alkane using molecular catalysts. To our knowledge, this is the first reported high-yield synthesis of dienes achieved via the dehydrogenation of n-alkane using molecular catalysts.
期刊介绍:
The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.