{"title":"水流对Er:YAG激光牙硬组织消融的影响。","authors":"Mee-Eun Kim, Deuk-Jin Jeoung, Ki-Suk Kim","doi":"10.1089/104454703321895581","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to investigate the effect of water on dental hard tissue ablation using Er:YAG laser as it relates to energy and pulse repetition rate, and determine the water flow rate that produces the most effective ablation at a given irradiation condition.</p><p><strong>Background data: </strong>Er:YAG laser application leads to volumetric expansion and micro-explosions that result in hard tissue ablation. Ablation efficiency is improved when combined with fine water spray.</p><p><strong>Materials and methods: </strong>Extracted, healthy human molars were sectioned into two pieces and categorized into small groups related to water flow rate (1.69, 6.75, and 13.5 mL/min), pulse energy (250 and 400 mJ), and pulse repetition rate (5, 10, and 20 Hz). Within the combination of irradiation parameters, a laser beam was applied over enamel and dentin surfaces of the specimens, and the ablation amount was determined by differences in weight before and after irradiation.</p><p><strong>Results: </strong>At a pulse energy of 250 mJ, the most effective ablation resulted from a water flow rate of 1.69 mL/min in both enamel and dentin. With 400 mJ/pulse, dentin removal was most effective at the water flow rate of 1.69 mL/min, whereas the efficiency of enamel ablation was the highest at 6.75 mL/min. Dental hard tissue ablated better as energy and pulse repetition rate increased.</p><p><strong>Conclusion: </strong>Effective ablation of dental hard tissue using Er:YAG laser requires that the appropriate water flow rate correspond properly to irradiation conditions. The results of this study suggest the following parameters; a water flow rate of 1.69 mL/min for enamel and dentin ablation at a pulse energy of 250 mJ and for dentin ablation at 400 mJ/pulse, and a water flow rate of 6.75 mL/min for enamel ablation at a pulse energy of 400 mJ, regardless of pulse repetition rate of 5, 10, and 20 Hz.</p>","PeriodicalId":79503,"journal":{"name":"Journal of clinical laser medicine & surgery","volume":"21 3","pages":"139-44"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/104454703321895581","citationCount":"59","resultStr":"{\"title\":\"Effects of water flow on dental hard tissue ablation using Er:YAG laser.\",\"authors\":\"Mee-Eun Kim, Deuk-Jin Jeoung, Ki-Suk Kim\",\"doi\":\"10.1089/104454703321895581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The aim of this study was to investigate the effect of water on dental hard tissue ablation using Er:YAG laser as it relates to energy and pulse repetition rate, and determine the water flow rate that produces the most effective ablation at a given irradiation condition.</p><p><strong>Background data: </strong>Er:YAG laser application leads to volumetric expansion and micro-explosions that result in hard tissue ablation. Ablation efficiency is improved when combined with fine water spray.</p><p><strong>Materials and methods: </strong>Extracted, healthy human molars were sectioned into two pieces and categorized into small groups related to water flow rate (1.69, 6.75, and 13.5 mL/min), pulse energy (250 and 400 mJ), and pulse repetition rate (5, 10, and 20 Hz). Within the combination of irradiation parameters, a laser beam was applied over enamel and dentin surfaces of the specimens, and the ablation amount was determined by differences in weight before and after irradiation.</p><p><strong>Results: </strong>At a pulse energy of 250 mJ, the most effective ablation resulted from a water flow rate of 1.69 mL/min in both enamel and dentin. With 400 mJ/pulse, dentin removal was most effective at the water flow rate of 1.69 mL/min, whereas the efficiency of enamel ablation was the highest at 6.75 mL/min. Dental hard tissue ablated better as energy and pulse repetition rate increased.</p><p><strong>Conclusion: </strong>Effective ablation of dental hard tissue using Er:YAG laser requires that the appropriate water flow rate correspond properly to irradiation conditions. The results of this study suggest the following parameters; a water flow rate of 1.69 mL/min for enamel and dentin ablation at a pulse energy of 250 mJ and for dentin ablation at 400 mJ/pulse, and a water flow rate of 6.75 mL/min for enamel ablation at a pulse energy of 400 mJ, regardless of pulse repetition rate of 5, 10, and 20 Hz.</p>\",\"PeriodicalId\":79503,\"journal\":{\"name\":\"Journal of clinical laser medicine & surgery\",\"volume\":\"21 3\",\"pages\":\"139-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/104454703321895581\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of clinical laser medicine & surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/104454703321895581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical laser medicine & surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/104454703321895581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of water flow on dental hard tissue ablation using Er:YAG laser.
Objective: The aim of this study was to investigate the effect of water on dental hard tissue ablation using Er:YAG laser as it relates to energy and pulse repetition rate, and determine the water flow rate that produces the most effective ablation at a given irradiation condition.
Background data: Er:YAG laser application leads to volumetric expansion and micro-explosions that result in hard tissue ablation. Ablation efficiency is improved when combined with fine water spray.
Materials and methods: Extracted, healthy human molars were sectioned into two pieces and categorized into small groups related to water flow rate (1.69, 6.75, and 13.5 mL/min), pulse energy (250 and 400 mJ), and pulse repetition rate (5, 10, and 20 Hz). Within the combination of irradiation parameters, a laser beam was applied over enamel and dentin surfaces of the specimens, and the ablation amount was determined by differences in weight before and after irradiation.
Results: At a pulse energy of 250 mJ, the most effective ablation resulted from a water flow rate of 1.69 mL/min in both enamel and dentin. With 400 mJ/pulse, dentin removal was most effective at the water flow rate of 1.69 mL/min, whereas the efficiency of enamel ablation was the highest at 6.75 mL/min. Dental hard tissue ablated better as energy and pulse repetition rate increased.
Conclusion: Effective ablation of dental hard tissue using Er:YAG laser requires that the appropriate water flow rate correspond properly to irradiation conditions. The results of this study suggest the following parameters; a water flow rate of 1.69 mL/min for enamel and dentin ablation at a pulse energy of 250 mJ and for dentin ablation at 400 mJ/pulse, and a water flow rate of 6.75 mL/min for enamel ablation at a pulse energy of 400 mJ, regardless of pulse repetition rate of 5, 10, and 20 Hz.