Guillaume Drin, Christophe Rousselle, Jean-Michel Scherrmann, Anthony R Rees, Jamal Temsamani
{"title":"通过吸附介导的内吞作用向大脑传递肽:SynB载体的进展。","authors":"Guillaume Drin, Christophe Rousselle, Jean-Michel Scherrmann, Anthony R Rees, Jamal Temsamani","doi":"10.1208/ps040426","DOIUrl":null,"url":null,"abstract":"<p><p>Biological membranes normally restrict the passage of hydrophilic molecules. This impairs the use of a wide variety of drugs for biomedical applications. To overcome this problem, researchers have developed strategies that involve conjugating the molecule of interest to one of a number of peptide entities that are efficiently transported across the cell membranes. In the past decade, a number of different peptide families with the ability to cross the cell membranes have been identified. Certain of these families enter the cells by a receptor-independent mechanism, are short (10-27 amino acid residues), and can deliver successfully various cargoes across the cell membrane into the cytoplasm or nucleus. Surprisingly, some of these vectors, the SynB vectors, have also shown the ability to deliver hydrophilic molecules across the blood-brain barrier, one of the major obstacles to the development of drugs to combat diseases affecting the CNS.</p>","PeriodicalId":6918,"journal":{"name":"AAPS PharmSci","volume":"4 4","pages":"E26"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1208/ps040426","citationCount":"42","resultStr":"{\"title\":\"Peptide delivery to the brain via adsorptive-mediated endocytosis: advances with SynB vectors.\",\"authors\":\"Guillaume Drin, Christophe Rousselle, Jean-Michel Scherrmann, Anthony R Rees, Jamal Temsamani\",\"doi\":\"10.1208/ps040426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological membranes normally restrict the passage of hydrophilic molecules. This impairs the use of a wide variety of drugs for biomedical applications. To overcome this problem, researchers have developed strategies that involve conjugating the molecule of interest to one of a number of peptide entities that are efficiently transported across the cell membranes. In the past decade, a number of different peptide families with the ability to cross the cell membranes have been identified. Certain of these families enter the cells by a receptor-independent mechanism, are short (10-27 amino acid residues), and can deliver successfully various cargoes across the cell membrane into the cytoplasm or nucleus. Surprisingly, some of these vectors, the SynB vectors, have also shown the ability to deliver hydrophilic molecules across the blood-brain barrier, one of the major obstacles to the development of drugs to combat diseases affecting the CNS.</p>\",\"PeriodicalId\":6918,\"journal\":{\"name\":\"AAPS PharmSci\",\"volume\":\"4 4\",\"pages\":\"E26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1208/ps040426\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSci\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1208/ps040426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSci","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1208/ps040426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Peptide delivery to the brain via adsorptive-mediated endocytosis: advances with SynB vectors.
Biological membranes normally restrict the passage of hydrophilic molecules. This impairs the use of a wide variety of drugs for biomedical applications. To overcome this problem, researchers have developed strategies that involve conjugating the molecule of interest to one of a number of peptide entities that are efficiently transported across the cell membranes. In the past decade, a number of different peptide families with the ability to cross the cell membranes have been identified. Certain of these families enter the cells by a receptor-independent mechanism, are short (10-27 amino acid residues), and can deliver successfully various cargoes across the cell membrane into the cytoplasm or nucleus. Surprisingly, some of these vectors, the SynB vectors, have also shown the ability to deliver hydrophilic molecules across the blood-brain barrier, one of the major obstacles to the development of drugs to combat diseases affecting the CNS.