{"title":"630、660、810和905 nm激光照射1-50 J/cm2对三种体外细菌的影响","authors":"Ethne L Nussbaum, Lothar Lilge, Tony Mazzulli","doi":"10.1089/104454702320901116","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To examine the effects of low-intensity laser therapy (LILT) on bacterial growth in vitro.</p><p><strong>Background data: </strong>LILT is undergoing investigation as a treatment for accelerating healing of open wounds. The potential of coincident effects on wound bacteria has received little attention. Increased bacterial proliferation could further delay recovery; conversely inhibition could be beneficial.</p><p><strong>Materials and methods: </strong>Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus were plated on agar and then irradiated with wavelengths of 630, 660, 810, and 905 nm (0.015 W/cm(2)) and radiant exposures of 1-50 J/cm(2). In addition, E. coli was irradiated with 810 nm at an irradiance of 0.03 W/cm(2) (1-50 J/cm(2)). Cells were counted after 20 h of incubation post LILT. Repeated measures ANOVA and Tukey adjusted post hoc tests were used for analysis.</p><p><strong>Results: </strong>There were interactions between wavelength and species (p = 0.0001) and between wavelength and radiant exposure (p = 0.007) in the overall effects on bacterial growth; therefore, individual wavelengths were analyzed. Over all types of bacteria, there were overall growth effects using 810- and 630-nm lasers, with species differences at 630 nm. Effects occurred at low radiant exposures (1-20 J/cm(2)). Overall effects were marginal using 660 nm and negative at 905 nm. Inhibition of P. aeruginosa followed irradiation using 810 nm at 5 J/cm(2) (-23%; p = 0.02). Irradiation using 630 nm at 1 J/cm(2) inhibited P. aeruginosa and E. coli (-27%). Irradiation using 810 nm (0.015 W/cm(2)) increased E. coli growth, but with increased irradiance (0.03 W/cm(2)) the growth was significant (p = 0.04), reaching 30% at 20 J/cm(2) (p = 0.01). S. aureus growth increased 27% following 905-nm irradiation at 50 J/cm(2).</p><p><strong>Conclusion: </strong>LILT applied to wounds, delivering commonly used wavelengths and radiant exposures in the range of 1-20 J/cm(2), could produce changes in bacterial growth of considerable importance for wound healing. A wavelength of 630 nm appeared to be most commonly associated with bacterial inhibition. The findings of this study might be useful as a basis for selecting LILT for infected wounds.</p>","PeriodicalId":79503,"journal":{"name":"Journal of clinical laser medicine & surgery","volume":"20 6","pages":"325-33"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/104454702320901116","citationCount":"139","resultStr":"{\"title\":\"Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1-50 J/cm2 on three species of bacteria in vitro.\",\"authors\":\"Ethne L Nussbaum, Lothar Lilge, Tony Mazzulli\",\"doi\":\"10.1089/104454702320901116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To examine the effects of low-intensity laser therapy (LILT) on bacterial growth in vitro.</p><p><strong>Background data: </strong>LILT is undergoing investigation as a treatment for accelerating healing of open wounds. The potential of coincident effects on wound bacteria has received little attention. Increased bacterial proliferation could further delay recovery; conversely inhibition could be beneficial.</p><p><strong>Materials and methods: </strong>Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus were plated on agar and then irradiated with wavelengths of 630, 660, 810, and 905 nm (0.015 W/cm(2)) and radiant exposures of 1-50 J/cm(2). In addition, E. coli was irradiated with 810 nm at an irradiance of 0.03 W/cm(2) (1-50 J/cm(2)). Cells were counted after 20 h of incubation post LILT. Repeated measures ANOVA and Tukey adjusted post hoc tests were used for analysis.</p><p><strong>Results: </strong>There were interactions between wavelength and species (p = 0.0001) and between wavelength and radiant exposure (p = 0.007) in the overall effects on bacterial growth; therefore, individual wavelengths were analyzed. Over all types of bacteria, there were overall growth effects using 810- and 630-nm lasers, with species differences at 630 nm. Effects occurred at low radiant exposures (1-20 J/cm(2)). Overall effects were marginal using 660 nm and negative at 905 nm. Inhibition of P. aeruginosa followed irradiation using 810 nm at 5 J/cm(2) (-23%; p = 0.02). Irradiation using 630 nm at 1 J/cm(2) inhibited P. aeruginosa and E. coli (-27%). Irradiation using 810 nm (0.015 W/cm(2)) increased E. coli growth, but with increased irradiance (0.03 W/cm(2)) the growth was significant (p = 0.04), reaching 30% at 20 J/cm(2) (p = 0.01). S. aureus growth increased 27% following 905-nm irradiation at 50 J/cm(2).</p><p><strong>Conclusion: </strong>LILT applied to wounds, delivering commonly used wavelengths and radiant exposures in the range of 1-20 J/cm(2), could produce changes in bacterial growth of considerable importance for wound healing. A wavelength of 630 nm appeared to be most commonly associated with bacterial inhibition. The findings of this study might be useful as a basis for selecting LILT for infected wounds.</p>\",\"PeriodicalId\":79503,\"journal\":{\"name\":\"Journal of clinical laser medicine & surgery\",\"volume\":\"20 6\",\"pages\":\"325-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/104454702320901116\",\"citationCount\":\"139\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of clinical laser medicine & surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/104454702320901116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical laser medicine & surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/104454702320901116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1-50 J/cm2 on three species of bacteria in vitro.
Objective: To examine the effects of low-intensity laser therapy (LILT) on bacterial growth in vitro.
Background data: LILT is undergoing investigation as a treatment for accelerating healing of open wounds. The potential of coincident effects on wound bacteria has received little attention. Increased bacterial proliferation could further delay recovery; conversely inhibition could be beneficial.
Materials and methods: Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus were plated on agar and then irradiated with wavelengths of 630, 660, 810, and 905 nm (0.015 W/cm(2)) and radiant exposures of 1-50 J/cm(2). In addition, E. coli was irradiated with 810 nm at an irradiance of 0.03 W/cm(2) (1-50 J/cm(2)). Cells were counted after 20 h of incubation post LILT. Repeated measures ANOVA and Tukey adjusted post hoc tests were used for analysis.
Results: There were interactions between wavelength and species (p = 0.0001) and between wavelength and radiant exposure (p = 0.007) in the overall effects on bacterial growth; therefore, individual wavelengths were analyzed. Over all types of bacteria, there were overall growth effects using 810- and 630-nm lasers, with species differences at 630 nm. Effects occurred at low radiant exposures (1-20 J/cm(2)). Overall effects were marginal using 660 nm and negative at 905 nm. Inhibition of P. aeruginosa followed irradiation using 810 nm at 5 J/cm(2) (-23%; p = 0.02). Irradiation using 630 nm at 1 J/cm(2) inhibited P. aeruginosa and E. coli (-27%). Irradiation using 810 nm (0.015 W/cm(2)) increased E. coli growth, but with increased irradiance (0.03 W/cm(2)) the growth was significant (p = 0.04), reaching 30% at 20 J/cm(2) (p = 0.01). S. aureus growth increased 27% following 905-nm irradiation at 50 J/cm(2).
Conclusion: LILT applied to wounds, delivering commonly used wavelengths and radiant exposures in the range of 1-20 J/cm(2), could produce changes in bacterial growth of considerable importance for wound healing. A wavelength of 630 nm appeared to be most commonly associated with bacterial inhibition. The findings of this study might be useful as a basis for selecting LILT for infected wounds.