Laurence Pietri, May Bloch-Faure, Marie-France Belair, L Philip Sanford, Tom Doetschman, Joël Ménard, Patrick Bruneval, Pierre Meneton
{"title":"tgf - β(2)基因零突变的杂合小鼠肾脏肾素合成和分泌的改变","authors":"Laurence Pietri, May Bloch-Faure, Marie-France Belair, L Philip Sanford, Tom Doetschman, Joël Ménard, Patrick Bruneval, Pierre Meneton","doi":"10.1159/000065302","DOIUrl":null,"url":null,"abstract":"<p><p>Transforming growth factors beta (TGF-betas) are peptides involved in autocrine and paracrine control of cell growth and differentiation. In the kidneys, TGF-beta(2) has been shown to localize specifically in renin-producing cells in various conditions stimulating the renin response. To test in vivo the functional role of TGF-beta(2), the renin response was investigated in mice heterozygous for a null mutation of the TGF-beta(2) gene, which had a twofold reduction in the amount of TGF-beta(2) mRNA. Although the increase in plasma renin concentration triggered by dehydration was not different from wild-type mice, renal renin mRNA and protein levels were higher in mutant mice under hydrated or dehydrated conditions. These data suggest that TGF-beta(2) exerts an inhibitory effect on renin synthesis and release from the juxtaglomerular apparatuses.</p>","PeriodicalId":12179,"journal":{"name":"Experimental nephrology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000065302","citationCount":"9","resultStr":"{\"title\":\"Altered renin synthesis and secretion in the kidneys of heterozygous mice with a null mutation in the TGF-beta(2) gene.\",\"authors\":\"Laurence Pietri, May Bloch-Faure, Marie-France Belair, L Philip Sanford, Tom Doetschman, Joël Ménard, Patrick Bruneval, Pierre Meneton\",\"doi\":\"10.1159/000065302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transforming growth factors beta (TGF-betas) are peptides involved in autocrine and paracrine control of cell growth and differentiation. In the kidneys, TGF-beta(2) has been shown to localize specifically in renin-producing cells in various conditions stimulating the renin response. To test in vivo the functional role of TGF-beta(2), the renin response was investigated in mice heterozygous for a null mutation of the TGF-beta(2) gene, which had a twofold reduction in the amount of TGF-beta(2) mRNA. Although the increase in plasma renin concentration triggered by dehydration was not different from wild-type mice, renal renin mRNA and protein levels were higher in mutant mice under hydrated or dehydrated conditions. These data suggest that TGF-beta(2) exerts an inhibitory effect on renin synthesis and release from the juxtaglomerular apparatuses.</p>\",\"PeriodicalId\":12179,\"journal\":{\"name\":\"Experimental nephrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000065302\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental nephrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000065302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000065302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Altered renin synthesis and secretion in the kidneys of heterozygous mice with a null mutation in the TGF-beta(2) gene.
Transforming growth factors beta (TGF-betas) are peptides involved in autocrine and paracrine control of cell growth and differentiation. In the kidneys, TGF-beta(2) has been shown to localize specifically in renin-producing cells in various conditions stimulating the renin response. To test in vivo the functional role of TGF-beta(2), the renin response was investigated in mice heterozygous for a null mutation of the TGF-beta(2) gene, which had a twofold reduction in the amount of TGF-beta(2) mRNA. Although the increase in plasma renin concentration triggered by dehydration was not different from wild-type mice, renal renin mRNA and protein levels were higher in mutant mice under hydrated or dehydrated conditions. These data suggest that TGF-beta(2) exerts an inhibitory effect on renin synthesis and release from the juxtaglomerular apparatuses.