{"title":"PDZ支架蛋白在小管细胞中维持极化功能的作用。","authors":"Paul A Glynne, Thomas J Evans","doi":"10.1159/000065307","DOIUrl":null,"url":null,"abstract":"<p><p>Polarized tubule epithelial cell functions are dependent on correct delivery of effector proteins to the target apical or basolateral plasma membrane and associated cortical cytoskeleton. PDZ (Postsynaptic density protein 95/Drosophila Disks large/Zona occludens-1) domain-containing proteins have been identified as playing a critical role in membrane trafficking and sorting of ion transporters, receptors and other signalling proteins. These scaffolding proteins coordinate the assembly of functional plasma membrane multiprotein complexes, through PDZ domain binding to a consensus amino acid motif within the carboxyl-terminus of target proteins. The organization of these proteins into submembranous complexes may facilitate downstream signalling. Although several epithelial PDZ proteins that bind to a number of important mammalian proteins have been isolated, in many cases the significance of these interactions is unclear. However, the epithelial PDZ domain-containing Na(+)/H(+) exchanger regulatory factor tethers the Na(+)/H(+) exchanger and cystic fibrosis transmembrane regulator Cl(-) channel within an apical plasma membrane signalling complex, and has been shown to regulate the activity of these proteins. This article reviews the current evidence that supports a central role for the PDZ protein in the regulation of polarized tubule cell functions, such as vectorial solute transport.</p>","PeriodicalId":12179,"journal":{"name":"Experimental nephrology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000065307","citationCount":"13","resultStr":"{\"title\":\"Role of the PDZ scaffolding protein in tubule cells in maintenance of polarised function.\",\"authors\":\"Paul A Glynne, Thomas J Evans\",\"doi\":\"10.1159/000065307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polarized tubule epithelial cell functions are dependent on correct delivery of effector proteins to the target apical or basolateral plasma membrane and associated cortical cytoskeleton. PDZ (Postsynaptic density protein 95/Drosophila Disks large/Zona occludens-1) domain-containing proteins have been identified as playing a critical role in membrane trafficking and sorting of ion transporters, receptors and other signalling proteins. These scaffolding proteins coordinate the assembly of functional plasma membrane multiprotein complexes, through PDZ domain binding to a consensus amino acid motif within the carboxyl-terminus of target proteins. The organization of these proteins into submembranous complexes may facilitate downstream signalling. Although several epithelial PDZ proteins that bind to a number of important mammalian proteins have been isolated, in many cases the significance of these interactions is unclear. However, the epithelial PDZ domain-containing Na(+)/H(+) exchanger regulatory factor tethers the Na(+)/H(+) exchanger and cystic fibrosis transmembrane regulator Cl(-) channel within an apical plasma membrane signalling complex, and has been shown to regulate the activity of these proteins. This article reviews the current evidence that supports a central role for the PDZ protein in the regulation of polarized tubule cell functions, such as vectorial solute transport.</p>\",\"PeriodicalId\":12179,\"journal\":{\"name\":\"Experimental nephrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000065307\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental nephrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000065307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000065307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
摘要
极化小管上皮细胞的功能依赖于效应蛋白正确递送到靶尖或基侧质膜和相关的皮质细胞骨架。PDZ (Postsynaptic density protein 95/Drosophila Disks large/ zone occluden -1)结构域蛋白在离子转运体、受体和其他信号蛋白的膜转运和分选中起着关键作用。这些支架蛋白通过PDZ结构域与靶蛋白羧基端一致的氨基酸基序结合,协调功能性质膜多蛋白复合物的组装。这些蛋白组织成膜下复合物可能促进下游信号传导。尽管已经分离出几种与许多重要哺乳动物蛋白结合的上皮PDZ蛋白,但在许多情况下,这些相互作用的意义尚不清楚。然而,上皮PDZ结构域含有Na(+)/H(+)交换调节因子拴住了顶端质膜信号复合体内的Na(+)/H(+)交换和囊性纤维化跨膜调节因子Cl(-)通道,并已被证明可调节这些蛋白的活性。本文综述了目前支持PDZ蛋白在极化小管细胞功能调控中的核心作用的证据,如载体溶质运输。
Role of the PDZ scaffolding protein in tubule cells in maintenance of polarised function.
Polarized tubule epithelial cell functions are dependent on correct delivery of effector proteins to the target apical or basolateral plasma membrane and associated cortical cytoskeleton. PDZ (Postsynaptic density protein 95/Drosophila Disks large/Zona occludens-1) domain-containing proteins have been identified as playing a critical role in membrane trafficking and sorting of ion transporters, receptors and other signalling proteins. These scaffolding proteins coordinate the assembly of functional plasma membrane multiprotein complexes, through PDZ domain binding to a consensus amino acid motif within the carboxyl-terminus of target proteins. The organization of these proteins into submembranous complexes may facilitate downstream signalling. Although several epithelial PDZ proteins that bind to a number of important mammalian proteins have been isolated, in many cases the significance of these interactions is unclear. However, the epithelial PDZ domain-containing Na(+)/H(+) exchanger regulatory factor tethers the Na(+)/H(+) exchanger and cystic fibrosis transmembrane regulator Cl(-) channel within an apical plasma membrane signalling complex, and has been shown to regulate the activity of these proteins. This article reviews the current evidence that supports a central role for the PDZ protein in the regulation of polarized tubule cell functions, such as vectorial solute transport.