Paul J Donovan, George T Smith, Charles W Riggs, Valerii A Alexandrov
{"title":"葡萄糖对胎鼠细胞克隆效率和诱变的影响。","authors":"Paul J Donovan, George T Smith, Charles W Riggs, Valerii A Alexandrov","doi":"10.1002/tcm.10027","DOIUrl":null,"url":null,"abstract":"<p><p>In a previous study, treatment of rats with 10% glucose in the drinking water, as fetuses during gestation and for 1.5 months after delivery, significantly enhanced tumor incidence that resulted from N-methyl-N-nitrosourea (MNU, 20 mg/kg) given transplacentally on gestation day 21, with a 1.6-fold increase in overall tumor incidence. We investigated whether glucose would have an effect on MNU-induced mutation in fetal F-344 rat somatic cells as measured in an in vivo/in vitro assay. Rat fetuses were exposed transplacentally to MNU on gestation day 16 and to a 10% glucose solution from gestation day 7 to day 17. Cells were isolated on gestation day 17 for determination of cloning efficiency and for selection of 6-thioguanine (6-TG)-resistant HGPRT mutants. Cloning efficiency of the fetal cells exposed to MNU alone was 22.6+/-2.3% S.E., while that for cells from fetuses exposed to MNU+glucose was 27.5+/-1.6% S.E., which was a significant difference (P=0.018). This indicates an effect of glucose on cell proliferation and survival. MNU treatment significantly increased the mutation frequency of fetal cells from a spontaneous value of 0.4 x 10(-6) per viable cell to (8.8+/-1.8 S.E.,) x 10(-6) (P=0.0087). The coexposure to MNU and glucose yielded a mutant frequency per plate of 0.62+/-0.05 S.E., which was a 1.5-fold increase compared to MNU alone (0.43+/-0.11 S.E., P=0.075. In summary, the data indicate that glucose during pregnancy increases proliferation/survival of fetal cells and possibly also mutation rate.</p>","PeriodicalId":22336,"journal":{"name":"Teratogenesis, carcinogenesis, and mutagenesis","volume":"22 5","pages":"329-34"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/tcm.10027","citationCount":"1","resultStr":"{\"title\":\"Effects of glucose on cloning efficiency and mutagenesis of fetal rat cells.\",\"authors\":\"Paul J Donovan, George T Smith, Charles W Riggs, Valerii A Alexandrov\",\"doi\":\"10.1002/tcm.10027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a previous study, treatment of rats with 10% glucose in the drinking water, as fetuses during gestation and for 1.5 months after delivery, significantly enhanced tumor incidence that resulted from N-methyl-N-nitrosourea (MNU, 20 mg/kg) given transplacentally on gestation day 21, with a 1.6-fold increase in overall tumor incidence. We investigated whether glucose would have an effect on MNU-induced mutation in fetal F-344 rat somatic cells as measured in an in vivo/in vitro assay. Rat fetuses were exposed transplacentally to MNU on gestation day 16 and to a 10% glucose solution from gestation day 7 to day 17. Cells were isolated on gestation day 17 for determination of cloning efficiency and for selection of 6-thioguanine (6-TG)-resistant HGPRT mutants. Cloning efficiency of the fetal cells exposed to MNU alone was 22.6+/-2.3% S.E., while that for cells from fetuses exposed to MNU+glucose was 27.5+/-1.6% S.E., which was a significant difference (P=0.018). This indicates an effect of glucose on cell proliferation and survival. MNU treatment significantly increased the mutation frequency of fetal cells from a spontaneous value of 0.4 x 10(-6) per viable cell to (8.8+/-1.8 S.E.,) x 10(-6) (P=0.0087). The coexposure to MNU and glucose yielded a mutant frequency per plate of 0.62+/-0.05 S.E., which was a 1.5-fold increase compared to MNU alone (0.43+/-0.11 S.E., P=0.075. In summary, the data indicate that glucose during pregnancy increases proliferation/survival of fetal cells and possibly also mutation rate.</p>\",\"PeriodicalId\":22336,\"journal\":{\"name\":\"Teratogenesis, carcinogenesis, and mutagenesis\",\"volume\":\"22 5\",\"pages\":\"329-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/tcm.10027\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teratogenesis, carcinogenesis, and mutagenesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/tcm.10027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teratogenesis, carcinogenesis, and mutagenesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/tcm.10027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of glucose on cloning efficiency and mutagenesis of fetal rat cells.
In a previous study, treatment of rats with 10% glucose in the drinking water, as fetuses during gestation and for 1.5 months after delivery, significantly enhanced tumor incidence that resulted from N-methyl-N-nitrosourea (MNU, 20 mg/kg) given transplacentally on gestation day 21, with a 1.6-fold increase in overall tumor incidence. We investigated whether glucose would have an effect on MNU-induced mutation in fetal F-344 rat somatic cells as measured in an in vivo/in vitro assay. Rat fetuses were exposed transplacentally to MNU on gestation day 16 and to a 10% glucose solution from gestation day 7 to day 17. Cells were isolated on gestation day 17 for determination of cloning efficiency and for selection of 6-thioguanine (6-TG)-resistant HGPRT mutants. Cloning efficiency of the fetal cells exposed to MNU alone was 22.6+/-2.3% S.E., while that for cells from fetuses exposed to MNU+glucose was 27.5+/-1.6% S.E., which was a significant difference (P=0.018). This indicates an effect of glucose on cell proliferation and survival. MNU treatment significantly increased the mutation frequency of fetal cells from a spontaneous value of 0.4 x 10(-6) per viable cell to (8.8+/-1.8 S.E.,) x 10(-6) (P=0.0087). The coexposure to MNU and glucose yielded a mutant frequency per plate of 0.62+/-0.05 S.E., which was a 1.5-fold increase compared to MNU alone (0.43+/-0.11 S.E., P=0.075. In summary, the data indicate that glucose during pregnancy increases proliferation/survival of fetal cells and possibly also mutation rate.