有限长度瑞利-贝纳德对流中的对流卷和传热:一个二维数值研究

Kenjeres, Hanjalic
{"title":"有限长度瑞利-贝纳德对流中的对流卷和传热:一个二维数值研究","authors":"Kenjeres,&nbsp;Hanjalic","doi":"10.1103/physreve.62.7987","DOIUrl":null,"url":null,"abstract":"<p><p>A two-dimensional (2D) numerical study using a single-point algebraic k-straight theta;(2)-varepsilon-varepsilon(straight theta) turbulence closure was performed to detect the existence, origin, creation and behavior of convective rolls and associated wall Nusselt (Nu) number variation in thermal convection in 2D horizontal slender enclosures heated from below. The study covered the Rayleigh (Ra) numbers from 10(5) to 10(12) and aspect ratios from 4:1 to 32:1. The time evolution of the convective rolls and the formation of the corner vortices were analyzed using numerical flow visualization, and the correlation between roll structures and heat transfer established. A major consequence of the imposed two dimensionality appeared in the persistence of regular roll structures at higher Ra numbers that approach a steady state for all configurations considered. This finding contradicts the full three-dimensional direct numerical simulations (DNS), large eddy simulations (LES), and three-dimensional transient Reynolds-averaged Navier-Stokes (TRANS) computations, which all show continuously changing unsteady patterns. However, the final-stage roll structures, long-term averaged mean temperature and turbulence moments, and the Nusselt number (both local and integral), are all reproduced in good agreement with the ensemble-averaged 3D DNS, TRANS, and several recent experimental results. These findings justified the 2D approach as an acceptable method for ensemble average analysis of fully 3D flows with at least one homogeneous direction. Based on our 2D computations and adopting the low and high Ra number asymptotic power laws of Grossmann and Lohse [J. Fluid Mech. 407, 27 (2000)], new prefactors in the Nu-Ra correlation for Pr=O(1) were proposed that fit better several sets of data over a wide range of Ra numbers and aspect ratios: Nu=0.1Ra(1/4)+0.05Ra(1/3). Even better agreement of our computations was achieved with the new correlation Nu=0.124 Ra0.309 proposed recently by Niemela et al. [Nature (London) 404, 837 (2000)] for 10(6)</=Ra</=10(17).</p>","PeriodicalId":20079,"journal":{"name":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","volume":"62 6 Pt A","pages":"7987-98"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1103/physreve.62.7987","citationCount":"67","resultStr":"{\"title\":\"Convective rolls and heat transfer in finite-length rayleigh-Benard convection: A two-dimensional numerical study\",\"authors\":\"Kenjeres,&nbsp;Hanjalic\",\"doi\":\"10.1103/physreve.62.7987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A two-dimensional (2D) numerical study using a single-point algebraic k-straight theta;(2)-varepsilon-varepsilon(straight theta) turbulence closure was performed to detect the existence, origin, creation and behavior of convective rolls and associated wall Nusselt (Nu) number variation in thermal convection in 2D horizontal slender enclosures heated from below. The study covered the Rayleigh (Ra) numbers from 10(5) to 10(12) and aspect ratios from 4:1 to 32:1. The time evolution of the convective rolls and the formation of the corner vortices were analyzed using numerical flow visualization, and the correlation between roll structures and heat transfer established. A major consequence of the imposed two dimensionality appeared in the persistence of regular roll structures at higher Ra numbers that approach a steady state for all configurations considered. This finding contradicts the full three-dimensional direct numerical simulations (DNS), large eddy simulations (LES), and three-dimensional transient Reynolds-averaged Navier-Stokes (TRANS) computations, which all show continuously changing unsteady patterns. However, the final-stage roll structures, long-term averaged mean temperature and turbulence moments, and the Nusselt number (both local and integral), are all reproduced in good agreement with the ensemble-averaged 3D DNS, TRANS, and several recent experimental results. These findings justified the 2D approach as an acceptable method for ensemble average analysis of fully 3D flows with at least one homogeneous direction. Based on our 2D computations and adopting the low and high Ra number asymptotic power laws of Grossmann and Lohse [J. Fluid Mech. 407, 27 (2000)], new prefactors in the Nu-Ra correlation for Pr=O(1) were proposed that fit better several sets of data over a wide range of Ra numbers and aspect ratios: Nu=0.1Ra(1/4)+0.05Ra(1/3). Even better agreement of our computations was achieved with the new correlation Nu=0.124 Ra0.309 proposed recently by Niemela et al. [Nature (London) 404, 837 (2000)] for 10(6)</=Ra</=10(17).</p>\",\"PeriodicalId\":20079,\"journal\":{\"name\":\"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics\",\"volume\":\"62 6 Pt A\",\"pages\":\"7987-98\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1103/physreve.62.7987\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.62.7987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.62.7987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

利用单点代数k-straight theta;(2)-varepsilon-varepsilon(straight theta)湍流闭包进行二维(2D)数值研究,以检测从下方加热的二维水平细长罩中对流卷的存在、起源、产生和行为以及相关的壁面努塞尔(Nu)数变化。该研究涵盖了瑞利(Ra)数从10(5)到10(12),宽高比从4:1到32:1。利用数值流动显示技术分析了对流轧辊的时间演化和角涡的形成,建立了轧辊结构与换热之间的关系。施加二维的一个主要后果出现在高Ra数下的规则滚动结构的持续存在,这些结构在所有考虑的配置中都接近稳定状态。这一发现与全三维直接数值模拟(DNS)、大涡模拟(LES)和三维瞬态reynolds -平均Navier-Stokes (TRANS)计算相矛盾,后者都显示出连续变化的非定常模式。然而,最后阶段的滚转结构、长期平均温度和湍流矩以及努塞尔数(局部和积分)都与集成平均的3D DNS、TRANS和最近的几个实验结果很好地吻合。这些发现证明了二维方法对于至少有一个均匀方向的全三维流动的总体平均分析是一种可接受的方法。基于二维计算,采用Grossmann和Lohse的低Ra数和高Ra数渐近幂律[J]。[j] .流体力学,1997,27(2000)],提出了Pr=O(1)的Nu-Ra相关性的新前因子:Nu=0.1Ra(1/4)+0.05Ra(1/3),可以更好地拟合多个Ra数和长径比范围内的数据。Niemela等人最近提出的新的相关性Nu=0.124 Ra0.309 [Nature (London) 404, 837(2000)]与10(6)的计算结果更加吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convective rolls and heat transfer in finite-length rayleigh-Benard convection: A two-dimensional numerical study

A two-dimensional (2D) numerical study using a single-point algebraic k-straight theta;(2)-varepsilon-varepsilon(straight theta) turbulence closure was performed to detect the existence, origin, creation and behavior of convective rolls and associated wall Nusselt (Nu) number variation in thermal convection in 2D horizontal slender enclosures heated from below. The study covered the Rayleigh (Ra) numbers from 10(5) to 10(12) and aspect ratios from 4:1 to 32:1. The time evolution of the convective rolls and the formation of the corner vortices were analyzed using numerical flow visualization, and the correlation between roll structures and heat transfer established. A major consequence of the imposed two dimensionality appeared in the persistence of regular roll structures at higher Ra numbers that approach a steady state for all configurations considered. This finding contradicts the full three-dimensional direct numerical simulations (DNS), large eddy simulations (LES), and three-dimensional transient Reynolds-averaged Navier-Stokes (TRANS) computations, which all show continuously changing unsteady patterns. However, the final-stage roll structures, long-term averaged mean temperature and turbulence moments, and the Nusselt number (both local and integral), are all reproduced in good agreement with the ensemble-averaged 3D DNS, TRANS, and several recent experimental results. These findings justified the 2D approach as an acceptable method for ensemble average analysis of fully 3D flows with at least one homogeneous direction. Based on our 2D computations and adopting the low and high Ra number asymptotic power laws of Grossmann and Lohse [J. Fluid Mech. 407, 27 (2000)], new prefactors in the Nu-Ra correlation for Pr=O(1) were proposed that fit better several sets of data over a wide range of Ra numbers and aspect ratios: Nu=0.1Ra(1/4)+0.05Ra(1/3). Even better agreement of our computations was achieved with the new correlation Nu=0.124 Ra0.309 proposed recently by Niemela et al. [Nature (London) 404, 837 (2000)] for 10(6)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信