{"title":"两亲性流体相互作用的晶格-玻尔兹曼模型","authors":"Nekovee, Coveney, Chen, Boghosian","doi":"10.1103/physreve.62.8282","DOIUrl":null,"url":null,"abstract":"<p><p>We develop our recently proposed lattice-Boltzmann method for the nonequilibrium dynamics of amphiphilic fluids [H. Chen, B. M. Boghosian, P. V. Coveney, and M. Nekovee, Proc. R. Soc. London, Ser. A 456, 2043 (2000)]. Our method maintains an orientational degree of freedom for the amphiphilic species and models fluid interactions at a microscopic level by introducing self-consistent mean-field forces between the particles into the lattice-Boltzmann dynamics, in a way that is consistent with kinetic theory. We present the results of extensive simulations in two dimensions which demonstrate the ability of our model to capture the correct phenomenology of binary and ternary amphiphilic fluids.</p>","PeriodicalId":20079,"journal":{"name":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","volume":"62 6 Pt B","pages":"8282-94"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1103/physreve.62.8282","citationCount":"71","resultStr":"{\"title\":\"Lattice-boltzmann model for interacting amphiphilic fluids\",\"authors\":\"Nekovee, Coveney, Chen, Boghosian\",\"doi\":\"10.1103/physreve.62.8282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We develop our recently proposed lattice-Boltzmann method for the nonequilibrium dynamics of amphiphilic fluids [H. Chen, B. M. Boghosian, P. V. Coveney, and M. Nekovee, Proc. R. Soc. London, Ser. A 456, 2043 (2000)]. Our method maintains an orientational degree of freedom for the amphiphilic species and models fluid interactions at a microscopic level by introducing self-consistent mean-field forces between the particles into the lattice-Boltzmann dynamics, in a way that is consistent with kinetic theory. We present the results of extensive simulations in two dimensions which demonstrate the ability of our model to capture the correct phenomenology of binary and ternary amphiphilic fluids.</p>\",\"PeriodicalId\":20079,\"journal\":{\"name\":\"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics\",\"volume\":\"62 6 Pt B\",\"pages\":\"8282-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1103/physreve.62.8282\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.62.8282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.62.8282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71
摘要
我们发展了最近提出的两亲性流体非平衡动力学的晶格-玻尔兹曼方法[H]。陈,B. M. Boghosian, P. V. Coveney和M. Nekovee, Proc. R. Soc。伦敦,爵士。[j].科学通报,2009,(2)。我们的方法保持了两亲物种的取向自由度,并在微观水平上通过将粒子之间的自洽平均场力引入晶格-玻尔兹曼动力学来模拟流体相互作用,这与动力学理论是一致的。我们提出了广泛的二维模拟结果,证明了我们的模型能够捕捉二元和三元两亲性流体的正确现象学。
Lattice-boltzmann model for interacting amphiphilic fluids
We develop our recently proposed lattice-Boltzmann method for the nonequilibrium dynamics of amphiphilic fluids [H. Chen, B. M. Boghosian, P. V. Coveney, and M. Nekovee, Proc. R. Soc. London, Ser. A 456, 2043 (2000)]. Our method maintains an orientational degree of freedom for the amphiphilic species and models fluid interactions at a microscopic level by introducing self-consistent mean-field forces between the particles into the lattice-Boltzmann dynamics, in a way that is consistent with kinetic theory. We present the results of extensive simulations in two dimensions which demonstrate the ability of our model to capture the correct phenomenology of binary and ternary amphiphilic fluids.