半导体微谐振器中的腔孤子:存在性、稳定性和动力学性质

Maggipinto, Brambilla, Harkness, Firth
{"title":"半导体微谐振器中的腔孤子:存在性、稳定性和动力学性质","authors":"Maggipinto,&nbsp;Brambilla,&nbsp;Harkness,&nbsp;Firth","doi":"10.1103/physreve.62.8726","DOIUrl":null,"url":null,"abstract":"<p><p>We apply a versatile numerical technique to establishing the existence of cavity solitons (CS) in a semiconductor microresonator with bulk GaAs or multiple quantum well GaAs/AlGaAs as its active layer. Based on a Newton method, our approach implies the evaluation of the linearized operator describing deviations from the exact stationary state. The eigenvalues of this operator determine the dynamical stability of the CS. A typical eigenspectrum contains a zero eigenvalue with which a \"neutral mode\" of the CS is associated. Such neutral modes are characteristic of models with translational symmetry. All other eigenvalues typically have negative real parts large enough to cause any excitations to die out in a few medium response times. The neutral mode thus dominates the response to external random or deterministic perturbations, and its excitation induces a simple translation of the CS, which are thus stable and robust. We show how to relate the speed with which a CS moves under external perturbations to the projection of the perturbations on to the neutral mode, and give some examples, including weak gradients on the driving field and interaction with other CS. Finally, we show that the separatrix between two stable coexisting solutions: the homogeneous solution and the CS is the intervening unstable CS solution. Our results are important with a view to future applications of CS to optical information processing.</p>","PeriodicalId":20079,"journal":{"name":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","volume":"62 6 Pt B","pages":"8726-39"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1103/physreve.62.8726","citationCount":"77","resultStr":"{\"title\":\"Cavity solitons in semiconductor microresonators: existence, stability, and dynamical properties\",\"authors\":\"Maggipinto,&nbsp;Brambilla,&nbsp;Harkness,&nbsp;Firth\",\"doi\":\"10.1103/physreve.62.8726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We apply a versatile numerical technique to establishing the existence of cavity solitons (CS) in a semiconductor microresonator with bulk GaAs or multiple quantum well GaAs/AlGaAs as its active layer. Based on a Newton method, our approach implies the evaluation of the linearized operator describing deviations from the exact stationary state. The eigenvalues of this operator determine the dynamical stability of the CS. A typical eigenspectrum contains a zero eigenvalue with which a \\\"neutral mode\\\" of the CS is associated. Such neutral modes are characteristic of models with translational symmetry. All other eigenvalues typically have negative real parts large enough to cause any excitations to die out in a few medium response times. The neutral mode thus dominates the response to external random or deterministic perturbations, and its excitation induces a simple translation of the CS, which are thus stable and robust. We show how to relate the speed with which a CS moves under external perturbations to the projection of the perturbations on to the neutral mode, and give some examples, including weak gradients on the driving field and interaction with other CS. Finally, we show that the separatrix between two stable coexisting solutions: the homogeneous solution and the CS is the intervening unstable CS solution. Our results are important with a view to future applications of CS to optical information processing.</p>\",\"PeriodicalId\":20079,\"journal\":{\"name\":\"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics\",\"volume\":\"62 6 Pt B\",\"pages\":\"8726-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1103/physreve.62.8726\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.62.8726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.62.8726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

我们应用了一种通用的数值技术来建立以大块GaAs或多量子阱GaAs/AlGaAs为有源层的半导体微谐振腔孤子(CS)的存在性。基于牛顿方法,我们的方法隐含了线性化算子的评估,该算子描述了与精确平稳状态的偏差。该算子的特征值决定了系统的动态稳定性。一个典型的特征谱包含一个零特征值,它与CS的“中性模式”相关联。这种中性模式是具有平移对称性的模型的特征。所有其他特征值通常具有足够大的负实部,足以导致任何激励在几个中等响应时间内消失。中性模式因此支配了对外部随机或确定性扰动的响应,其激励诱导了CS的简单平移,从而稳定和鲁棒。我们展示了如何将CS在外部扰动下移动的速度与扰动在中性模式上的投影联系起来,并给出了一些例子,包括驾驶场上的弱梯度和与其他CS的相互作用。最后,我们证明了两个稳定共存解:齐次解和CS之间的分离矩阵是中间的不稳定CS解。我们的研究结果对CS在光学信息处理中的应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cavity solitons in semiconductor microresonators: existence, stability, and dynamical properties

We apply a versatile numerical technique to establishing the existence of cavity solitons (CS) in a semiconductor microresonator with bulk GaAs or multiple quantum well GaAs/AlGaAs as its active layer. Based on a Newton method, our approach implies the evaluation of the linearized operator describing deviations from the exact stationary state. The eigenvalues of this operator determine the dynamical stability of the CS. A typical eigenspectrum contains a zero eigenvalue with which a "neutral mode" of the CS is associated. Such neutral modes are characteristic of models with translational symmetry. All other eigenvalues typically have negative real parts large enough to cause any excitations to die out in a few medium response times. The neutral mode thus dominates the response to external random or deterministic perturbations, and its excitation induces a simple translation of the CS, which are thus stable and robust. We show how to relate the speed with which a CS moves under external perturbations to the projection of the perturbations on to the neutral mode, and give some examples, including weak gradients on the driving field and interaction with other CS. Finally, we show that the separatrix between two stable coexisting solutions: the homogeneous solution and the CS is the intervening unstable CS solution. Our results are important with a view to future applications of CS to optical information processing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信