湍流异常指数的解析计算:用融合规则冲洗出一个小参数

L'vov, Procaccia
{"title":"湍流异常指数的解析计算:用融合规则冲洗出一个小参数","authors":"L'vov,&nbsp;Procaccia","doi":"10.1103/physreve.62.8037","DOIUrl":null,"url":null,"abstract":"<p><p>The main difficulty of statistical theories of fluid turbulence is the lack of an obvious small parameter. In this paper we show that the formerly established fusion rules can be employed to develop a theory in which Kolmogorov's statistics of 1941 (K41) acts as the zero order, or background statistics, and the anomalous corrections to the K41 scaling exponents zeta(n) of the nth-order structure functions can be computed analytically. The crux of the method consists of renormalizing a four-point interaction amplitude on the basis of the fusion rules. This amplitude includes a small dimensionless parameter, which is shown to be of the order of the anomaly of zeta(2), delta(2)=zeta(2)-2/3 approximately 0.03. Higher-order interaction amplitudes are shown to be even smaller. The corrections to K41 to O(delta(2)) result from standard logarithmically divergent ladder diagrams in which the four-point interaction acts as a \"rung.\" The theory allows a calculation of the anomalous exponents zeta(n) in powers of the small parameter delta(2). The n dependence of the scaling exponents zeta(n) stems from pure combinatorics of the ladder diagrams. In this paper we calculate the exponents zeta(n) up to O(delta32). Previously derived bridge relations allow a calculation of the anomalous exponents of correlations of the dissipation field and of dynamical correlations in terms of the same parameter delta(2). The actual evaluation of the small parameter delta(2) from first principles requires additional developments that are outside the scope of this paper.</p>","PeriodicalId":20079,"journal":{"name":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","volume":"62 6 Pt A","pages":"8037-57"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1103/physreve.62.8037","citationCount":"28","resultStr":"{\"title\":\"Analytic calculation of the anomalous exponents in turbulence: using the fusion rules to flush out a small parameter\",\"authors\":\"L'vov,&nbsp;Procaccia\",\"doi\":\"10.1103/physreve.62.8037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The main difficulty of statistical theories of fluid turbulence is the lack of an obvious small parameter. In this paper we show that the formerly established fusion rules can be employed to develop a theory in which Kolmogorov's statistics of 1941 (K41) acts as the zero order, or background statistics, and the anomalous corrections to the K41 scaling exponents zeta(n) of the nth-order structure functions can be computed analytically. The crux of the method consists of renormalizing a four-point interaction amplitude on the basis of the fusion rules. This amplitude includes a small dimensionless parameter, which is shown to be of the order of the anomaly of zeta(2), delta(2)=zeta(2)-2/3 approximately 0.03. Higher-order interaction amplitudes are shown to be even smaller. The corrections to K41 to O(delta(2)) result from standard logarithmically divergent ladder diagrams in which the four-point interaction acts as a \\\"rung.\\\" The theory allows a calculation of the anomalous exponents zeta(n) in powers of the small parameter delta(2). The n dependence of the scaling exponents zeta(n) stems from pure combinatorics of the ladder diagrams. In this paper we calculate the exponents zeta(n) up to O(delta32). Previously derived bridge relations allow a calculation of the anomalous exponents of correlations of the dissipation field and of dynamical correlations in terms of the same parameter delta(2). The actual evaluation of the small parameter delta(2) from first principles requires additional developments that are outside the scope of this paper.</p>\",\"PeriodicalId\":20079,\"journal\":{\"name\":\"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics\",\"volume\":\"62 6 Pt A\",\"pages\":\"8037-57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1103/physreve.62.8037\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.62.8037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.62.8037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

流体湍流统计理论的主要困难是缺乏一个明显的小参数。在本文中,我们证明了先前建立的融合规则可以用来发展一种理论,其中Kolmogorov的1941统计量(K41)作为零阶或背景统计量,并且可以解析地计算n阶结构函数的K41缩放指数zeta(n)的异常修正。该方法的核心是在融合规则的基础上对四点相互作用幅度进行重归一化。该振幅包括一个小的无量纲参数,该参数显示为zeta(2)的异常数量级,delta(2)=zeta(2)-2/3,约为0.03。高阶相互作用幅值更小。对K41到O(δ(2))的修正来自标准的对数发散梯形图,其中四点相互作用充当“梯级”。该理论允许以小参数delta(2)的幂计算异常指数zeta(n)。缩放指数zeta(n)的n依赖性源于阶梯图的纯组合学。本文计算了zeta(n)到O(delta32)的指数。先前推导出的桥关系允许用相同的参数δ(2)计算耗散场和动力相关的异常指数。从第一原理对小参数delta(2)的实际评估需要在本文范围之外进行额外的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic calculation of the anomalous exponents in turbulence: using the fusion rules to flush out a small parameter

The main difficulty of statistical theories of fluid turbulence is the lack of an obvious small parameter. In this paper we show that the formerly established fusion rules can be employed to develop a theory in which Kolmogorov's statistics of 1941 (K41) acts as the zero order, or background statistics, and the anomalous corrections to the K41 scaling exponents zeta(n) of the nth-order structure functions can be computed analytically. The crux of the method consists of renormalizing a four-point interaction amplitude on the basis of the fusion rules. This amplitude includes a small dimensionless parameter, which is shown to be of the order of the anomaly of zeta(2), delta(2)=zeta(2)-2/3 approximately 0.03. Higher-order interaction amplitudes are shown to be even smaller. The corrections to K41 to O(delta(2)) result from standard logarithmically divergent ladder diagrams in which the four-point interaction acts as a "rung." The theory allows a calculation of the anomalous exponents zeta(n) in powers of the small parameter delta(2). The n dependence of the scaling exponents zeta(n) stems from pure combinatorics of the ladder diagrams. In this paper we calculate the exponents zeta(n) up to O(delta32). Previously derived bridge relations allow a calculation of the anomalous exponents of correlations of the dissipation field and of dynamical correlations in terms of the same parameter delta(2). The actual evaluation of the small parameter delta(2) from first principles requires additional developments that are outside the scope of this paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信