{"title":"对“关于‘极性流体的代数微扰理论:介电常数模型’的批注”的答复","authors":"Kalikmanov","doi":"10.1103/physreve.62.8851","DOIUrl":null,"url":null,"abstract":"<p><p>In their Comment [Phys. Rev. E 62, 8842 (2000)] Szalai et al. use the \"Fourier-transform-convolution method\" to correct the two three-body integrals entering our algebraic perturbation theory for polar fluids [Phys. Rev. E 59, 5085 (1999)]. We present an alternative analytical calculation of these integrals that is more transparent than that of Szalai et al. Compared with the original expression for the dielectric constant [Phys. Rev. E 59, 5085 (1999)] the corrected one demonstrates a better agreement with the simulation data for low and moderate values of the coupling constant.</p>","PeriodicalId":20079,"journal":{"name":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","volume":"62 6 Pt B","pages":"8851-3"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1103/physreve.62.8851","citationCount":"10","resultStr":"{\"title\":\"Reply to \\\"Comment on 'Algebraic perturbation theory for polar fluids: A model for the dielectric constant' \\\"\",\"authors\":\"Kalikmanov\",\"doi\":\"10.1103/physreve.62.8851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In their Comment [Phys. Rev. E 62, 8842 (2000)] Szalai et al. use the \\\"Fourier-transform-convolution method\\\" to correct the two three-body integrals entering our algebraic perturbation theory for polar fluids [Phys. Rev. E 59, 5085 (1999)]. We present an alternative analytical calculation of these integrals that is more transparent than that of Szalai et al. Compared with the original expression for the dielectric constant [Phys. Rev. E 59, 5085 (1999)] the corrected one demonstrates a better agreement with the simulation data for low and moderate values of the coupling constant.</p>\",\"PeriodicalId\":20079,\"journal\":{\"name\":\"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics\",\"volume\":\"62 6 Pt B\",\"pages\":\"8851-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1103/physreve.62.8851\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.62.8851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.62.8851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
摘要
在他们的评论中[物理学]。Szalai等人使用“傅立叶变换卷积法”修正了进入我们的极性流体代数摄动理论的两个三体积分[物理学报]. ei, 62, 8842(2000)。[j].中国农业科学,1999,19(5)。我们提出了这些积分的另一种分析计算,比Szalai等人的计算更透明。与原介电常数表达式进行了比较。Rev. E 59, 5085(1999)]修正后的耦合常数中低值与模拟数据吻合较好。
Reply to "Comment on 'Algebraic perturbation theory for polar fluids: A model for the dielectric constant' "
In their Comment [Phys. Rev. E 62, 8842 (2000)] Szalai et al. use the "Fourier-transform-convolution method" to correct the two three-body integrals entering our algebraic perturbation theory for polar fluids [Phys. Rev. E 59, 5085 (1999)]. We present an alternative analytical calculation of these integrals that is more transparent than that of Szalai et al. Compared with the original expression for the dielectric constant [Phys. Rev. E 59, 5085 (1999)] the corrected one demonstrates a better agreement with the simulation data for low and moderate values of the coupling constant.