改善放射标记肽成像和治疗的基因转移策略。

B E Rogers, K R Zinn, D J Buchsbaum
{"title":"改善放射标记肽成像和治疗的基因转移策略。","authors":"B E Rogers,&nbsp;K R Zinn,&nbsp;D J Buchsbaum","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Utilization of molecular biology techniques offers attractive options in nuclear medicine for improving cancer imaging and therapy with radiolabeled peptides. Two of these options include utilization of phage-panning to identify novel tumor-specific peptides or single chain antibodies and gene transfer techniques to increase the number of antigen/receptor sites expressed on malignant cells. Our group has focused on the latter approach for improving radiolabeled peptide imaging and therapy. The most widely used gene transfer vectors in clinical gene therapy trials include retrovirus, cationic lipids, and adenovirus. We have utilized adenovirus vectors for gene transfer because of their ability to accomplish efficient in vivo gene transfer. Adenovirus vectors encoding the genes for a variety of antigens/receptors (carcinoembryonic antigen, gastrin-releasing peptide receptor, somatostatin receptor subtype 2 (SSTr2)) have all shown that their expression is increased on cancer cells both in vitro and in vivo following adenovirus infection. Of particular interest has been the adenovirus encoding for SSTr2 (AdCMVSSTr2). Various radioisotopes have been attached to somatostatin analogues for imaging and therapy of SSTr2-positive tumors both clinically and in animal models. The use of these analogues in combination with AdCMVSSTr2 is a promising approach for improving the detection sensitivity and therapeutic efficacy of these radiolabeled peptides against solid tumors. In addition, we have proposed the use of SSTr2 as a marker for imaging the expression of another cancer therapeutic transgene (e.g. cytosine deaminase, thymidine kinase) encoded within the same vector. This would allow for non-invasive monitoring of gene delivery to tumor sites.</p>","PeriodicalId":79384,"journal":{"name":"The quarterly journal of nuclear medicine : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR)","volume":"44 3","pages":"208-23"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene transfer strategies for improving radiolabeled peptide imaging and therapy.\",\"authors\":\"B E Rogers,&nbsp;K R Zinn,&nbsp;D J Buchsbaum\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Utilization of molecular biology techniques offers attractive options in nuclear medicine for improving cancer imaging and therapy with radiolabeled peptides. Two of these options include utilization of phage-panning to identify novel tumor-specific peptides or single chain antibodies and gene transfer techniques to increase the number of antigen/receptor sites expressed on malignant cells. Our group has focused on the latter approach for improving radiolabeled peptide imaging and therapy. The most widely used gene transfer vectors in clinical gene therapy trials include retrovirus, cationic lipids, and adenovirus. We have utilized adenovirus vectors for gene transfer because of their ability to accomplish efficient in vivo gene transfer. Adenovirus vectors encoding the genes for a variety of antigens/receptors (carcinoembryonic antigen, gastrin-releasing peptide receptor, somatostatin receptor subtype 2 (SSTr2)) have all shown that their expression is increased on cancer cells both in vitro and in vivo following adenovirus infection. Of particular interest has been the adenovirus encoding for SSTr2 (AdCMVSSTr2). Various radioisotopes have been attached to somatostatin analogues for imaging and therapy of SSTr2-positive tumors both clinically and in animal models. The use of these analogues in combination with AdCMVSSTr2 is a promising approach for improving the detection sensitivity and therapeutic efficacy of these radiolabeled peptides against solid tumors. In addition, we have proposed the use of SSTr2 as a marker for imaging the expression of another cancer therapeutic transgene (e.g. cytosine deaminase, thymidine kinase) encoded within the same vector. This would allow for non-invasive monitoring of gene delivery to tumor sites.</p>\",\"PeriodicalId\":79384,\"journal\":{\"name\":\"The quarterly journal of nuclear medicine : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR)\",\"volume\":\"44 3\",\"pages\":\"208-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The quarterly journal of nuclear medicine : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of nuclear medicine : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用分子生物学技术为核医学提供了有吸引力的选择,以改善放射性标记肽的癌症成像和治疗。其中两种选择包括利用噬菌体筛选来鉴定新的肿瘤特异性肽或单链抗体,以及利用基因转移技术来增加在恶性细胞上表达的抗原/受体位点的数量。我们的小组专注于后一种方法,以改善放射性标记肽成像和治疗。在临床基因治疗试验中应用最广泛的基因转移载体包括逆转录病毒、阳离子脂质和腺病毒。我们利用腺病毒载体进行基因转移,因为它们能够完成有效的体内基因转移。编码多种抗原/受体(癌胚抗原、胃泌素释放肽受体、生长抑素受体亚型2 (SSTr2))基因的腺病毒载体在体外和体内感染癌细胞后均显示其表达增加。特别令人感兴趣的是编码SSTr2的腺病毒(AdCMVSSTr2)。各种放射性同位素已被附着在生长抑素类似物上,用于临床和动物模型中sstr2阳性肿瘤的成像和治疗。这些类似物与AdCMVSSTr2联合使用是一种很有希望的方法,可以提高这些放射标记肽对实体瘤的检测灵敏度和治疗效果。此外,我们建议使用SSTr2作为标记物,成像在同一载体内编码的另一种癌症治疗性转基因(如胞嘧啶脱氨酶,胸苷激酶)的表达。这将使基因传递到肿瘤部位的非侵入性监测成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gene transfer strategies for improving radiolabeled peptide imaging and therapy.

Utilization of molecular biology techniques offers attractive options in nuclear medicine for improving cancer imaging and therapy with radiolabeled peptides. Two of these options include utilization of phage-panning to identify novel tumor-specific peptides or single chain antibodies and gene transfer techniques to increase the number of antigen/receptor sites expressed on malignant cells. Our group has focused on the latter approach for improving radiolabeled peptide imaging and therapy. The most widely used gene transfer vectors in clinical gene therapy trials include retrovirus, cationic lipids, and adenovirus. We have utilized adenovirus vectors for gene transfer because of their ability to accomplish efficient in vivo gene transfer. Adenovirus vectors encoding the genes for a variety of antigens/receptors (carcinoembryonic antigen, gastrin-releasing peptide receptor, somatostatin receptor subtype 2 (SSTr2)) have all shown that their expression is increased on cancer cells both in vitro and in vivo following adenovirus infection. Of particular interest has been the adenovirus encoding for SSTr2 (AdCMVSSTr2). Various radioisotopes have been attached to somatostatin analogues for imaging and therapy of SSTr2-positive tumors both clinically and in animal models. The use of these analogues in combination with AdCMVSSTr2 is a promising approach for improving the detection sensitivity and therapeutic efficacy of these radiolabeled peptides against solid tumors. In addition, we have proposed the use of SSTr2 as a marker for imaging the expression of another cancer therapeutic transgene (e.g. cytosine deaminase, thymidine kinase) encoded within the same vector. This would allow for non-invasive monitoring of gene delivery to tumor sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信