Bryan C. DeBusk , Shukrit S. Chimote , John M. Rimoldi , Dan Schenk
{"title":"日粮中溴化苯酚对绿壳壳菌(Cryptochiton stelleri)化学生物转化酶的影响(米登多夫,1846)","authors":"Bryan C. DeBusk , Shukrit S. Chimote , John M. Rimoldi , Dan Schenk","doi":"10.1016/S0742-8413(00)00141-9","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of diet and other non-anthropogenic stressors on biochemical defenses and their relationship to susceptibility have been largely ignored in wildlife populations. Lanosol is a compound found in relatively high amounts in various marine species of Rhodophyta, including <em>Odonthalia dentata</em>. While previous studies demonstrated that lanosol is a feeding deterrent to several marine herbivores, <em>Cryptochiton stelleri</em> readily feeds upon <em>O. dentata</em>. To examine the effects of lanosol on the profile of biochemical defenses in <em>C. stelleri</em>, chitons were gavaged daily with 0, 1, 2.5, 5, or 10 mg/kg of lanosol. After three days of exposure, digestive gland microsomes were probed for expression of homologous isoforms of cytochromes P450 (CYP1A, CYP3A, and CYP2) and phase II enzymatic activities. Expression of a 43 kDa CYP3A-like protein was increased by approximately 45% over control following 2.5, 5, and 10 mg/kg treatments. Estradiol hydroxylase activity tended to increase with the dose of lanosol. UDP-glucuronosyl transferase activity was highly variable but appeared to increase at the two highest treatments, while sulfotranserase activity was significantly decreased at the three highest doses. Kinetic studies of GST activity showed lanosol is a non-competitive inhibitor of both CDNB and GSH in the GST-mediated conjugation reaction. These results show that dietary exposure to the brominated-phenol, lanosol, may alter expression and activity of some phase I and II biotransformation enzymes in chitons, potentially providing a dietary advantage for the species.</p></div>","PeriodicalId":10586,"journal":{"name":"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0742-8413(00)00141-9","citationCount":"12","resultStr":"{\"title\":\"Effect of the dietary brominated phenol, lanasol, on chemical biotransformation enzymes in the gumboot chiton Cryptochiton stelleri (Middendorf, 1846)\",\"authors\":\"Bryan C. DeBusk , Shukrit S. Chimote , John M. Rimoldi , Dan Schenk\",\"doi\":\"10.1016/S0742-8413(00)00141-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effects of diet and other non-anthropogenic stressors on biochemical defenses and their relationship to susceptibility have been largely ignored in wildlife populations. Lanosol is a compound found in relatively high amounts in various marine species of Rhodophyta, including <em>Odonthalia dentata</em>. While previous studies demonstrated that lanosol is a feeding deterrent to several marine herbivores, <em>Cryptochiton stelleri</em> readily feeds upon <em>O. dentata</em>. To examine the effects of lanosol on the profile of biochemical defenses in <em>C. stelleri</em>, chitons were gavaged daily with 0, 1, 2.5, 5, or 10 mg/kg of lanosol. After three days of exposure, digestive gland microsomes were probed for expression of homologous isoforms of cytochromes P450 (CYP1A, CYP3A, and CYP2) and phase II enzymatic activities. Expression of a 43 kDa CYP3A-like protein was increased by approximately 45% over control following 2.5, 5, and 10 mg/kg treatments. Estradiol hydroxylase activity tended to increase with the dose of lanosol. UDP-glucuronosyl transferase activity was highly variable but appeared to increase at the two highest treatments, while sulfotranserase activity was significantly decreased at the three highest doses. Kinetic studies of GST activity showed lanosol is a non-competitive inhibitor of both CDNB and GSH in the GST-mediated conjugation reaction. These results show that dietary exposure to the brominated-phenol, lanosol, may alter expression and activity of some phase I and II biotransformation enzymes in chitons, potentially providing a dietary advantage for the species.</p></div>\",\"PeriodicalId\":10586,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0742-8413(00)00141-9\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0742841300001419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0742841300001419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of the dietary brominated phenol, lanasol, on chemical biotransformation enzymes in the gumboot chiton Cryptochiton stelleri (Middendorf, 1846)
The effects of diet and other non-anthropogenic stressors on biochemical defenses and their relationship to susceptibility have been largely ignored in wildlife populations. Lanosol is a compound found in relatively high amounts in various marine species of Rhodophyta, including Odonthalia dentata. While previous studies demonstrated that lanosol is a feeding deterrent to several marine herbivores, Cryptochiton stelleri readily feeds upon O. dentata. To examine the effects of lanosol on the profile of biochemical defenses in C. stelleri, chitons were gavaged daily with 0, 1, 2.5, 5, or 10 mg/kg of lanosol. After three days of exposure, digestive gland microsomes were probed for expression of homologous isoforms of cytochromes P450 (CYP1A, CYP3A, and CYP2) and phase II enzymatic activities. Expression of a 43 kDa CYP3A-like protein was increased by approximately 45% over control following 2.5, 5, and 10 mg/kg treatments. Estradiol hydroxylase activity tended to increase with the dose of lanosol. UDP-glucuronosyl transferase activity was highly variable but appeared to increase at the two highest treatments, while sulfotranserase activity was significantly decreased at the three highest doses. Kinetic studies of GST activity showed lanosol is a non-competitive inhibitor of both CDNB and GSH in the GST-mediated conjugation reaction. These results show that dietary exposure to the brominated-phenol, lanosol, may alter expression and activity of some phase I and II biotransformation enzymes in chitons, potentially providing a dietary advantage for the species.