Jagneshwar Dandapat , Gagan B.N. Chainy , K. Janardhana Rao
{"title":"饲料维生素e对罗氏沼虾抗氧化防御系统的调节作用","authors":"Jagneshwar Dandapat , Gagan B.N. Chainy , K. Janardhana Rao","doi":"10.1016/S0742-8413(00)00132-8","DOIUrl":null,"url":null,"abstract":"<div><p>The objectives of the present study were to determine the effect of supplementary vitamin-E (200, 400 and 600 mg/kg feed) on lipid peroxidation (LPX) and antioxidant defence system in gills and hepatopancreas of the freshwater prawn, <em>Macrobrachium rosenbergii</em>. Results indicated that vitamin-E inhibited LPX in the hepatopancreas in a comparatively lower dose than gills. Superoxide dismutase (SOD) activity was decreased significantly in gills in response to all the three supplemented diet, but in hepatopancreas decrease was observed only in response to higher doses of vitamin-E (400 and 600 mg/kg feed). Catalase (CAT) activity was reduced significantly only in gills but not in hepatopancreas. While glutathione peroxidase (GPX) activity was significantly elevated in the hepatopancreas by vitamin-E, its activity remains unaltered in gills. On the contrary, glutathione reductase (GR) activity was decreased in gills but that of hepatopancreas was constant. Glutathione (GSH) content of both gills and hepatopancreas was substantially elevated in the vitamin-E supplemented prawns. Although the ascorbic acid (ASA) content of gills was unchanged by vitamin-E, its level elevated significantly in hepatopancreas. Thus the findings of the present investigation suggest that dietary vitamin-E is capable of reducing LPX level and can modulate antioxidant defence system in gills and hepatopancreas, nevertheless, the response is highly tissue specific. It is further observed that highest dose of vitamin-E (600 mg/kg feed) could not render much additional protection in both the tissues.</p></div>","PeriodicalId":10586,"journal":{"name":"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0742-8413(00)00132-8","citationCount":"74","resultStr":"{\"title\":\"Dietary vitamin-E modulates antioxidant defence system in giant freshwater prawn, Macrobrachium rosenbergii\",\"authors\":\"Jagneshwar Dandapat , Gagan B.N. Chainy , K. Janardhana Rao\",\"doi\":\"10.1016/S0742-8413(00)00132-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objectives of the present study were to determine the effect of supplementary vitamin-E (200, 400 and 600 mg/kg feed) on lipid peroxidation (LPX) and antioxidant defence system in gills and hepatopancreas of the freshwater prawn, <em>Macrobrachium rosenbergii</em>. Results indicated that vitamin-E inhibited LPX in the hepatopancreas in a comparatively lower dose than gills. Superoxide dismutase (SOD) activity was decreased significantly in gills in response to all the three supplemented diet, but in hepatopancreas decrease was observed only in response to higher doses of vitamin-E (400 and 600 mg/kg feed). Catalase (CAT) activity was reduced significantly only in gills but not in hepatopancreas. While glutathione peroxidase (GPX) activity was significantly elevated in the hepatopancreas by vitamin-E, its activity remains unaltered in gills. On the contrary, glutathione reductase (GR) activity was decreased in gills but that of hepatopancreas was constant. Glutathione (GSH) content of both gills and hepatopancreas was substantially elevated in the vitamin-E supplemented prawns. Although the ascorbic acid (ASA) content of gills was unchanged by vitamin-E, its level elevated significantly in hepatopancreas. Thus the findings of the present investigation suggest that dietary vitamin-E is capable of reducing LPX level and can modulate antioxidant defence system in gills and hepatopancreas, nevertheless, the response is highly tissue specific. It is further observed that highest dose of vitamin-E (600 mg/kg feed) could not render much additional protection in both the tissues.</p></div>\",\"PeriodicalId\":10586,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0742-8413(00)00132-8\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0742841300001328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0742841300001328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dietary vitamin-E modulates antioxidant defence system in giant freshwater prawn, Macrobrachium rosenbergii
The objectives of the present study were to determine the effect of supplementary vitamin-E (200, 400 and 600 mg/kg feed) on lipid peroxidation (LPX) and antioxidant defence system in gills and hepatopancreas of the freshwater prawn, Macrobrachium rosenbergii. Results indicated that vitamin-E inhibited LPX in the hepatopancreas in a comparatively lower dose than gills. Superoxide dismutase (SOD) activity was decreased significantly in gills in response to all the three supplemented diet, but in hepatopancreas decrease was observed only in response to higher doses of vitamin-E (400 and 600 mg/kg feed). Catalase (CAT) activity was reduced significantly only in gills but not in hepatopancreas. While glutathione peroxidase (GPX) activity was significantly elevated in the hepatopancreas by vitamin-E, its activity remains unaltered in gills. On the contrary, glutathione reductase (GR) activity was decreased in gills but that of hepatopancreas was constant. Glutathione (GSH) content of both gills and hepatopancreas was substantially elevated in the vitamin-E supplemented prawns. Although the ascorbic acid (ASA) content of gills was unchanged by vitamin-E, its level elevated significantly in hepatopancreas. Thus the findings of the present investigation suggest that dietary vitamin-E is capable of reducing LPX level and can modulate antioxidant defence system in gills and hepatopancreas, nevertheless, the response is highly tissue specific. It is further observed that highest dose of vitamin-E (600 mg/kg feed) could not render much additional protection in both the tissues.