G Baldassarre, A Boccia, P Bruni, C Sandomenico, M V Barone, S Pepe, T Angrisano, B Belletti, M L Motti, A Fusco, G Viglietto
{"title":"维甲酸通过减少蛋白酶体依赖性细胞周期蛋白依赖性抑制剂p27的蛋白水解,诱导胚胎癌细胞的神经元分化。","authors":"G Baldassarre, A Boccia, P Bruni, C Sandomenico, M V Barone, S Pepe, T Angrisano, B Belletti, M L Motti, A Fusco, G Viglietto","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Retinoic acid (RA) treatment of embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) induces growth arrest and terminal differentiation along the neuronal pathway. In the present study, we provide a functional link between RA and p27 function in the control of neuronal differentiation in NT2/D1 cells. We report that RA enhances p27 expression, which results in increased association with cyclin E/cyclin-dependent kinase 2 complexes and suppression of their activity; however, antisense clones, which have greatly reduced RA-dependent p27 inducibility (NT2-p27AS), continue to synthesize DNA and are unable to differentiate properly in response to RA as determined by lack of neurite outgrowth and by the failure to modify surface antigens. As to the mechanism involved in RA-dependent p27 upregulation, our data support the concept that RA reduces p27 protein degradation through the ubiquitin/proteasome-dependent pathway. Taken together, these findings demonstrate that in embryonal carcinoma cells, p27 expression is required for growth arrest and proper neuronal differentiation.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 10","pages":"517-26"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retinoic acid induces neuronal differentiation of embryonal carcinoma cells by reducing proteasome-dependent proteolysis of the cyclin-dependent inhibitor p27.\",\"authors\":\"G Baldassarre, A Boccia, P Bruni, C Sandomenico, M V Barone, S Pepe, T Angrisano, B Belletti, M L Motti, A Fusco, G Viglietto\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retinoic acid (RA) treatment of embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) induces growth arrest and terminal differentiation along the neuronal pathway. In the present study, we provide a functional link between RA and p27 function in the control of neuronal differentiation in NT2/D1 cells. We report that RA enhances p27 expression, which results in increased association with cyclin E/cyclin-dependent kinase 2 complexes and suppression of their activity; however, antisense clones, which have greatly reduced RA-dependent p27 inducibility (NT2-p27AS), continue to synthesize DNA and are unable to differentiate properly in response to RA as determined by lack of neurite outgrowth and by the failure to modify surface antigens. As to the mechanism involved in RA-dependent p27 upregulation, our data support the concept that RA reduces p27 protein degradation through the ubiquitin/proteasome-dependent pathway. Taken together, these findings demonstrate that in embryonal carcinoma cells, p27 expression is required for growth arrest and proper neuronal differentiation.</p>\",\"PeriodicalId\":9753,\"journal\":{\"name\":\"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research\",\"volume\":\"11 10\",\"pages\":\"517-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Retinoic acid induces neuronal differentiation of embryonal carcinoma cells by reducing proteasome-dependent proteolysis of the cyclin-dependent inhibitor p27.
Retinoic acid (RA) treatment of embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) induces growth arrest and terminal differentiation along the neuronal pathway. In the present study, we provide a functional link between RA and p27 function in the control of neuronal differentiation in NT2/D1 cells. We report that RA enhances p27 expression, which results in increased association with cyclin E/cyclin-dependent kinase 2 complexes and suppression of their activity; however, antisense clones, which have greatly reduced RA-dependent p27 inducibility (NT2-p27AS), continue to synthesize DNA and are unable to differentiate properly in response to RA as determined by lack of neurite outgrowth and by the failure to modify surface antigens. As to the mechanism involved in RA-dependent p27 upregulation, our data support the concept that RA reduces p27 protein degradation through the ubiquitin/proteasome-dependent pathway. Taken together, these findings demonstrate that in embryonal carcinoma cells, p27 expression is required for growth arrest and proper neuronal differentiation.