N M Filipov, F N Thompson, J A Stuedemann, T H Elsasser, S Kahl, L H Stanker, C R Young, D L Dawe, C K Smith
{"title":"麦角胺对牛的抗炎作用。","authors":"N M Filipov, F N Thompson, J A Stuedemann, T H Elsasser, S Kahl, L H Stanker, C R Young, D L Dawe, C K Smith","doi":"10.1046/j.1525-1373.2000.22517.x","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this experiment was to investigate whether the ergot alkaloid, ergotamine (ET), an alkaloid used to model fescue toxicosis in cattle, modifies the response of cattle to endotoxin (LPS) challenge. Steers (n = 16) were divided into the following treatment groups: control (C), ergotamine (ET), endotoxin (LPS), and ET + LPS. ET and ET + LPS groups received a single bolus intravenous injection of ET (40 microg. kg. body wt(-1)), whereas C and LPS steers received a single bolus injection of sterile vehicle. Thirty minutes after ET/vehicle administration, a single bolus intravenous injection of LPS (0.2 microg. kg. body wt(-1)) was given. Blood was collected at various time points for 48 hr post. Endotoxin increased rectal temperature (RT) and the circulating levels of tumor necrosis factor-alpha (TNF-alpha), cortisol, haptoglobin (Hp), thromboxane B(2) (TXB(2)). The circulating Hp, TNF-alpha, and TXB(2) increases were blunted by pretreatment with ET compared with ET + LPS. Ergotamine by itself increased circulating cortisol and RT, whereas it decreased serum prolactin (PRL). Therefore, whereas administration of LPS at 0.2 microg/kg to steers resulted in an expected response, the combination of ET + LPS attenuated major effects of LPS alone. Thus, acute administration of ET appeared to be anti-inflammatory as it decreased the inflammatory response to LPS, an effect likely driven at least in part by the ET-caused cortisol increase.</p>","PeriodicalId":20675,"journal":{"name":"Proceedings of the Society for Experimental Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Anti-inflammatory effects of ergotamine in steers.\",\"authors\":\"N M Filipov, F N Thompson, J A Stuedemann, T H Elsasser, S Kahl, L H Stanker, C R Young, D L Dawe, C K Smith\",\"doi\":\"10.1046/j.1525-1373.2000.22517.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this experiment was to investigate whether the ergot alkaloid, ergotamine (ET), an alkaloid used to model fescue toxicosis in cattle, modifies the response of cattle to endotoxin (LPS) challenge. Steers (n = 16) were divided into the following treatment groups: control (C), ergotamine (ET), endotoxin (LPS), and ET + LPS. ET and ET + LPS groups received a single bolus intravenous injection of ET (40 microg. kg. body wt(-1)), whereas C and LPS steers received a single bolus injection of sterile vehicle. Thirty minutes after ET/vehicle administration, a single bolus intravenous injection of LPS (0.2 microg. kg. body wt(-1)) was given. Blood was collected at various time points for 48 hr post. Endotoxin increased rectal temperature (RT) and the circulating levels of tumor necrosis factor-alpha (TNF-alpha), cortisol, haptoglobin (Hp), thromboxane B(2) (TXB(2)). The circulating Hp, TNF-alpha, and TXB(2) increases were blunted by pretreatment with ET compared with ET + LPS. Ergotamine by itself increased circulating cortisol and RT, whereas it decreased serum prolactin (PRL). Therefore, whereas administration of LPS at 0.2 microg/kg to steers resulted in an expected response, the combination of ET + LPS attenuated major effects of LPS alone. Thus, acute administration of ET appeared to be anti-inflammatory as it decreased the inflammatory response to LPS, an effect likely driven at least in part by the ET-caused cortisol increase.</p>\",\"PeriodicalId\":20675,\"journal\":{\"name\":\"Proceedings of the Society for Experimental Biology and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Society for Experimental Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1046/j.1525-1373.2000.22517.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Society for Experimental Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1046/j.1525-1373.2000.22517.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anti-inflammatory effects of ergotamine in steers.
The objective of this experiment was to investigate whether the ergot alkaloid, ergotamine (ET), an alkaloid used to model fescue toxicosis in cattle, modifies the response of cattle to endotoxin (LPS) challenge. Steers (n = 16) were divided into the following treatment groups: control (C), ergotamine (ET), endotoxin (LPS), and ET + LPS. ET and ET + LPS groups received a single bolus intravenous injection of ET (40 microg. kg. body wt(-1)), whereas C and LPS steers received a single bolus injection of sterile vehicle. Thirty minutes after ET/vehicle administration, a single bolus intravenous injection of LPS (0.2 microg. kg. body wt(-1)) was given. Blood was collected at various time points for 48 hr post. Endotoxin increased rectal temperature (RT) and the circulating levels of tumor necrosis factor-alpha (TNF-alpha), cortisol, haptoglobin (Hp), thromboxane B(2) (TXB(2)). The circulating Hp, TNF-alpha, and TXB(2) increases were blunted by pretreatment with ET compared with ET + LPS. Ergotamine by itself increased circulating cortisol and RT, whereas it decreased serum prolactin (PRL). Therefore, whereas administration of LPS at 0.2 microg/kg to steers resulted in an expected response, the combination of ET + LPS attenuated major effects of LPS alone. Thus, acute administration of ET appeared to be anti-inflammatory as it decreased the inflammatory response to LPS, an effect likely driven at least in part by the ET-caused cortisol increase.