{"title":"血管内皮生长因子与血管生成的调控。","authors":"N Ferrara","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The development of a vascular supply is essential not only for organ development and differentiation during embryogenesis but also for wound healing and reproductive functions in the adult Folkman, 1995). Angiogenesis is also implicated in the pathogenesis of a variety of disorders: proliferative retinopathies, age-related macular degeneration, tumors, rheumatoid arthritis, and psoriasis (Folkman, 1995; Garner, 1994). Several potential regulators of angiogenesis have been identified, including fibroblast growth factor-a (aFGF), bFGF, transforming growth factor-alpha (TGF-alpha), TGF-beta, hepatocyte growth factor/scatter factor (HGF/SF), tumor necrosis factor-alpha (TNF-alpha), angiogenin, and interleukin-8 (IL-8) (Folkman and Shing, 1992; Risau, 1997). More recently, the angiopoietins, the ligands of the Tie-2 receptor (Suri et al., 1996; Maisonpierre et al., 1997), have been identified. Vascular endothelial growth factor (VEGF) is an endothelial-cell-specific mitogen. The finding that VEGF was potent and specific for vascular endothelial cells and, unlike bFGF, freely diffusible, led to the hypothesis that this molecule plays a unique role in the regulation of physiological and pathological angiogenesis (Ferrara and Henzel, 1989: Leung et al., 1989). Over the last few years, several additional members of the VEGF gene family have been identified, including placenta growth factor (PIGF) (Maglione et al., 1991,1993), VEGF-B (Olofsson et al., 1996), VEGF-C (Joukov et al., 1996; Lee et al., 1996), and VEGF-D (Orlandini et al., 1996. Achen et al., 1998). There is compelling evidence that VEGF plays an essential role in the development and differentiation of the cardiovascular system (Ferrara and Davis-Smyth, 1997).</p>","PeriodicalId":21099,"journal":{"name":"Recent progress in hormone research","volume":"55 ","pages":"15-35; discussion 35-6"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vascular endothelial growth factor and the regulation of angiogenesis.\",\"authors\":\"N Ferrara\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of a vascular supply is essential not only for organ development and differentiation during embryogenesis but also for wound healing and reproductive functions in the adult Folkman, 1995). Angiogenesis is also implicated in the pathogenesis of a variety of disorders: proliferative retinopathies, age-related macular degeneration, tumors, rheumatoid arthritis, and psoriasis (Folkman, 1995; Garner, 1994). Several potential regulators of angiogenesis have been identified, including fibroblast growth factor-a (aFGF), bFGF, transforming growth factor-alpha (TGF-alpha), TGF-beta, hepatocyte growth factor/scatter factor (HGF/SF), tumor necrosis factor-alpha (TNF-alpha), angiogenin, and interleukin-8 (IL-8) (Folkman and Shing, 1992; Risau, 1997). More recently, the angiopoietins, the ligands of the Tie-2 receptor (Suri et al., 1996; Maisonpierre et al., 1997), have been identified. Vascular endothelial growth factor (VEGF) is an endothelial-cell-specific mitogen. The finding that VEGF was potent and specific for vascular endothelial cells and, unlike bFGF, freely diffusible, led to the hypothesis that this molecule plays a unique role in the regulation of physiological and pathological angiogenesis (Ferrara and Henzel, 1989: Leung et al., 1989). Over the last few years, several additional members of the VEGF gene family have been identified, including placenta growth factor (PIGF) (Maglione et al., 1991,1993), VEGF-B (Olofsson et al., 1996), VEGF-C (Joukov et al., 1996; Lee et al., 1996), and VEGF-D (Orlandini et al., 1996. Achen et al., 1998). There is compelling evidence that VEGF plays an essential role in the development and differentiation of the cardiovascular system (Ferrara and Davis-Smyth, 1997).</p>\",\"PeriodicalId\":21099,\"journal\":{\"name\":\"Recent progress in hormone research\",\"volume\":\"55 \",\"pages\":\"15-35; discussion 35-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent progress in hormone research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in hormone research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
血管供应的发展不仅对胚胎发生期间的器官发育和分化至关重要,而且对成人的伤口愈合和生殖功能也至关重要(Folkman, 1995)。血管生成还涉及多种疾病的发病机制:增殖性视网膜病变、年龄相关性黄斑变性、肿瘤、类风湿关节炎和牛皮癣(Folkman, 1995;加纳,1994)。已经确定了几种潜在的血管生成调节因子,包括成纤维细胞生长因子-a (aFGF)、bFGF、转化生长因子- α (tgf - α)、tgf - β、肝细胞生长因子/分散因子(HGF/SF)、肿瘤坏死因子- α (tnf - α)、血管生成素和白细胞介素-8 (IL-8) (Folkman和Shing, 1992;Risau, 1997)。最近,血管生成素,Tie-2受体的配体(Suri et al., 1996;Maisonpierre et al., 1997)。血管内皮生长因子(VEGF)是一种内皮细胞特异性丝裂原。研究发现,VEGF对血管内皮细胞具有强效性和特异性,并且与bFGF不同,它具有自由扩散的特性,由此提出了该分子在生理和病理血管生成调控中发挥独特作用的假设(Ferrara and Henzel, 1989; Leung et al., 1989)。在过去的几年中,VEGF基因家族的几个其他成员已经被确定,包括胎盘生长因子(PIGF) (Maglione等人,1991,1993),VEGF- b (Olofsson等人,1996),VEGF- c (Joukov等人,1996;Lee et al., 1996)和VEGF-D (Orlandini et al., 1996)。Achen et al., 1998)。有令人信服的证据表明,VEGF在心血管系统的发育和分化中起着至关重要的作用(Ferrara和Davis-Smyth, 1997)。
Vascular endothelial growth factor and the regulation of angiogenesis.
The development of a vascular supply is essential not only for organ development and differentiation during embryogenesis but also for wound healing and reproductive functions in the adult Folkman, 1995). Angiogenesis is also implicated in the pathogenesis of a variety of disorders: proliferative retinopathies, age-related macular degeneration, tumors, rheumatoid arthritis, and psoriasis (Folkman, 1995; Garner, 1994). Several potential regulators of angiogenesis have been identified, including fibroblast growth factor-a (aFGF), bFGF, transforming growth factor-alpha (TGF-alpha), TGF-beta, hepatocyte growth factor/scatter factor (HGF/SF), tumor necrosis factor-alpha (TNF-alpha), angiogenin, and interleukin-8 (IL-8) (Folkman and Shing, 1992; Risau, 1997). More recently, the angiopoietins, the ligands of the Tie-2 receptor (Suri et al., 1996; Maisonpierre et al., 1997), have been identified. Vascular endothelial growth factor (VEGF) is an endothelial-cell-specific mitogen. The finding that VEGF was potent and specific for vascular endothelial cells and, unlike bFGF, freely diffusible, led to the hypothesis that this molecule plays a unique role in the regulation of physiological and pathological angiogenesis (Ferrara and Henzel, 1989: Leung et al., 1989). Over the last few years, several additional members of the VEGF gene family have been identified, including placenta growth factor (PIGF) (Maglione et al., 1991,1993), VEGF-B (Olofsson et al., 1996), VEGF-C (Joukov et al., 1996; Lee et al., 1996), and VEGF-D (Orlandini et al., 1996. Achen et al., 1998). There is compelling evidence that VEGF plays an essential role in the development and differentiation of the cardiovascular system (Ferrara and Davis-Smyth, 1997).