在加速疲劳试验机上对心脏瓣膜表面点蚀的试验。

H Lee, T Shimooka, Y Mitamura, K Yamamoto, T Yuhta
{"title":"在加速疲劳试验机上对心脏瓣膜表面点蚀的试验。","authors":"H Lee,&nbsp;T Shimooka,&nbsp;Y Mitamura,&nbsp;K Yamamoto,&nbsp;T Yuhta","doi":"10.1163/15685570052062567","DOIUrl":null,"url":null,"abstract":"<p><p>There are various reports on the fracture of mechanical heart valves implanted in humans or animals and it has been pointed out that fractures are induced by erosion of the disk surface due to cavitation bubbles. Cavitation erosion on mechanical heart valves was studied using our originally designed accelerated fatigue tester. Several valve housings with different compliance values were used. The number and position of pits on the valve disk were measured using an optical microscope. Disk-closing velocity was measured and cavitation bubbles were monitored by a high-speed video camera. It was found that disk-closing velocity increased and cavitation erosion was enhanced with an increase in compliance of the valve holder. Therefore, careful attention should be paid to the compliance of an accelerated fatigue tester.</p>","PeriodicalId":77139,"journal":{"name":"Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering","volume":"10 3","pages":"167-76"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/15685570052062567","citationCount":"10","resultStr":"{\"title\":\"Surface pitting of heart valve disks tested in an accelerated fatigue tester.\",\"authors\":\"H Lee,&nbsp;T Shimooka,&nbsp;Y Mitamura,&nbsp;K Yamamoto,&nbsp;T Yuhta\",\"doi\":\"10.1163/15685570052062567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There are various reports on the fracture of mechanical heart valves implanted in humans or animals and it has been pointed out that fractures are induced by erosion of the disk surface due to cavitation bubbles. Cavitation erosion on mechanical heart valves was studied using our originally designed accelerated fatigue tester. Several valve housings with different compliance values were used. The number and position of pits on the valve disk were measured using an optical microscope. Disk-closing velocity was measured and cavitation bubbles were monitored by a high-speed video camera. It was found that disk-closing velocity increased and cavitation erosion was enhanced with an increase in compliance of the valve holder. Therefore, careful attention should be paid to the compliance of an accelerated fatigue tester.</p>\",\"PeriodicalId\":77139,\"journal\":{\"name\":\"Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering\",\"volume\":\"10 3\",\"pages\":\"167-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1163/15685570052062567\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1163/15685570052062567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/15685570052062567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

关于植入人或动物的机械心脏瓣膜的骨折有各种各样的报道,并指出骨折是由空化气泡对磁盘表面的侵蚀引起的。采用自行设计的加速疲劳试验机对机械心脏瓣膜的空化腐蚀进行了研究。使用了几种具有不同柔度值的阀壳。用光学显微镜测量阀盘上凹坑的数量和位置。利用高速摄像机测量了圆盘闭合速度,并对空化气泡进行了监测。研究发现,随着阀座顺应度的增加,阀瓣关闭速度增加,空化侵蚀加剧。因此,加速疲劳试验机的符合性应引起高度重视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface pitting of heart valve disks tested in an accelerated fatigue tester.

There are various reports on the fracture of mechanical heart valves implanted in humans or animals and it has been pointed out that fractures are induced by erosion of the disk surface due to cavitation bubbles. Cavitation erosion on mechanical heart valves was studied using our originally designed accelerated fatigue tester. Several valve housings with different compliance values were used. The number and position of pits on the valve disk were measured using an optical microscope. Disk-closing velocity was measured and cavitation bubbles were monitored by a high-speed video camera. It was found that disk-closing velocity increased and cavitation erosion was enhanced with an increase in compliance of the valve holder. Therefore, careful attention should be paid to the compliance of an accelerated fatigue tester.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信