心肺支持相互作用——建模和仿真。

M Darowski
{"title":"心肺支持相互作用——建模和仿真。","authors":"M Darowski","doi":"10.1163/15685570052062648","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical support of the lungs used to preserve life or during any kind of surgery may have an adverse effect on the cardiovascular system. Usually, positive pressure in alveoli diminishes lung perfusion, venous return and cardiac output. Positive pressure during the respiratory cycle is transfered into the thoracic space. The aim of this study was to assess how synchronization of the respirator with spontaneous breathing influences the distribution of pressure and ventilation in nonhomogeneous lungs and how it should influence hemodynamics. For this purpose a multicompartmental model of respiratory system mechanics was used in the electrical analog of a respirator-lung circuit, which enabled us to simultaneously simulate ventilatory support and spontaneous breathing. Mechanical properties of the respiratory system were modeled by lumped parameters: resistances and capacitances of constant values, independent of lung volume or inspiratory flow changes. A multicompartmental model of the respiratory system enabled us to simulate lung pathology characterized by non-homogeneity of the mechanical properties of the different parts of the lungs. The results of simulations presented in the paper enable us to conclude that lung volume increase, independent of the respirator-patient breathing synchronization, may be modeled as the increase in pulmonary vascular resistance and alveolar pressure increase, dependent on respirator-patient breathing synchronization, may be averaged by esophageous balloon measurements which show intrathoracic pressure changes.</p>","PeriodicalId":77139,"journal":{"name":"Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering","volume":"10 3","pages":"157-65"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/15685570052062648","citationCount":"2","resultStr":"{\"title\":\"Heart and lung support interaction--modeling and simulation.\",\"authors\":\"M Darowski\",\"doi\":\"10.1163/15685570052062648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanical support of the lungs used to preserve life or during any kind of surgery may have an adverse effect on the cardiovascular system. Usually, positive pressure in alveoli diminishes lung perfusion, venous return and cardiac output. Positive pressure during the respiratory cycle is transfered into the thoracic space. The aim of this study was to assess how synchronization of the respirator with spontaneous breathing influences the distribution of pressure and ventilation in nonhomogeneous lungs and how it should influence hemodynamics. For this purpose a multicompartmental model of respiratory system mechanics was used in the electrical analog of a respirator-lung circuit, which enabled us to simultaneously simulate ventilatory support and spontaneous breathing. Mechanical properties of the respiratory system were modeled by lumped parameters: resistances and capacitances of constant values, independent of lung volume or inspiratory flow changes. A multicompartmental model of the respiratory system enabled us to simulate lung pathology characterized by non-homogeneity of the mechanical properties of the different parts of the lungs. The results of simulations presented in the paper enable us to conclude that lung volume increase, independent of the respirator-patient breathing synchronization, may be modeled as the increase in pulmonary vascular resistance and alveolar pressure increase, dependent on respirator-patient breathing synchronization, may be averaged by esophageous balloon measurements which show intrathoracic pressure changes.</p>\",\"PeriodicalId\":77139,\"journal\":{\"name\":\"Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering\",\"volume\":\"10 3\",\"pages\":\"157-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1163/15685570052062648\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1163/15685570052062648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/15685570052062648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

用于维持生命或任何手术期间的肺部机械支持可能对心血管系统产生不利影响。通常肺泡正压会减少肺灌注、静脉回流和心输出量。呼吸循环中的正压传递到胸廓空间。本研究的目的是评估呼吸机与自主呼吸的同步如何影响非均匀肺的压力和通气分布,以及它应该如何影响血流动力学。为此,在呼吸机-肺回路的电模拟中使用了呼吸系统力学的多室模型,这使我们能够同时模拟通气支持和自发呼吸。呼吸系统的力学特性通过集总参数建模:恒定值的阻力和电容,独立于肺容量或吸气流量的变化。呼吸系统的多室模型使我们能够模拟肺部病理,其特点是肺不同部分的机械特性不均匀。本文的模拟结果使我们能够得出结论,肺容量的增加与呼吸器-患者呼吸同步无关,可以建模为肺血管阻力的增加和肺泡压力的增加,依赖于呼吸器-患者呼吸同步,可以通过食道球囊测量平均,显示胸内压力的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heart and lung support interaction--modeling and simulation.

Mechanical support of the lungs used to preserve life or during any kind of surgery may have an adverse effect on the cardiovascular system. Usually, positive pressure in alveoli diminishes lung perfusion, venous return and cardiac output. Positive pressure during the respiratory cycle is transfered into the thoracic space. The aim of this study was to assess how synchronization of the respirator with spontaneous breathing influences the distribution of pressure and ventilation in nonhomogeneous lungs and how it should influence hemodynamics. For this purpose a multicompartmental model of respiratory system mechanics was used in the electrical analog of a respirator-lung circuit, which enabled us to simultaneously simulate ventilatory support and spontaneous breathing. Mechanical properties of the respiratory system were modeled by lumped parameters: resistances and capacitances of constant values, independent of lung volume or inspiratory flow changes. A multicompartmental model of the respiratory system enabled us to simulate lung pathology characterized by non-homogeneity of the mechanical properties of the different parts of the lungs. The results of simulations presented in the paper enable us to conclude that lung volume increase, independent of the respirator-patient breathing synchronization, may be modeled as the increase in pulmonary vascular resistance and alveolar pressure increase, dependent on respirator-patient breathing synchronization, may be averaged by esophageous balloon measurements which show intrathoracic pressure changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信