赛车轮椅推进运动学的频率分析。

C P DiGiovine, R A Cooper, M M DiGiovine, M L Boninger, R N Robertson
{"title":"赛车轮椅推进运动学的频率分析。","authors":"C P DiGiovine,&nbsp;R A Cooper,&nbsp;M M DiGiovine,&nbsp;M L Boninger,&nbsp;R N Robertson","doi":"10.1109/86.867880","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to describe the frequency content of racing wheelchair propulsion motion data. The selection of the filter corner frequency in previous kinematic analyses of manual wheelchair propulsion was commonly based on gait literature. An estimate of the frequency separating the signal and the noise was determined to make recommendations for low-pass digital filters. The global (noncoordinate specific) cutoff frequency was 6 Hz. The directional cutoff frequencies were 5.1, 3.9, and 5.6 Hz, in the anterior-posterior, superior-inferior and medial-lateral directions, respectively. Recommendations for the corner frequencies of low-pass Butterworth digital filters based on the cutoff frequency are higher than the corner frequencies used in previous studies of manual wheelchair propulsion kinematic data. This study provides a foundation for the data reduction of manual wheelchair propulsion kinematic data that is independent of gait literature.</p>","PeriodicalId":79442,"journal":{"name":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","volume":"8 3","pages":"385-93"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/86.867880","citationCount":"16","resultStr":"{\"title\":\"Frequency analysis of kinematics of racing wheelchair propulsion.\",\"authors\":\"C P DiGiovine,&nbsp;R A Cooper,&nbsp;M M DiGiovine,&nbsp;M L Boninger,&nbsp;R N Robertson\",\"doi\":\"10.1109/86.867880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to describe the frequency content of racing wheelchair propulsion motion data. The selection of the filter corner frequency in previous kinematic analyses of manual wheelchair propulsion was commonly based on gait literature. An estimate of the frequency separating the signal and the noise was determined to make recommendations for low-pass digital filters. The global (noncoordinate specific) cutoff frequency was 6 Hz. The directional cutoff frequencies were 5.1, 3.9, and 5.6 Hz, in the anterior-posterior, superior-inferior and medial-lateral directions, respectively. Recommendations for the corner frequencies of low-pass Butterworth digital filters based on the cutoff frequency are higher than the corner frequencies used in previous studies of manual wheelchair propulsion kinematic data. This study provides a foundation for the data reduction of manual wheelchair propulsion kinematic data that is independent of gait literature.</p>\",\"PeriodicalId\":79442,\"journal\":{\"name\":\"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society\",\"volume\":\"8 3\",\"pages\":\"385-93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/86.867880\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/86.867880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/86.867880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本研究的目的是描述赛车轮椅推进运动数据的频率内容。在以往的手动轮椅推进运动学分析中,滤波器角频率的选择通常基于步态文献。估计频率分离的信号和噪声被确定为低通数字滤波器的建议。全局(非坐标特定)截止频率为6 Hz。定向截止频率分别为5.1、3.9和5.6 Hz,分别位于前后、上下和中外侧方向。基于截止频率的低通巴特沃斯数字滤波器的角频率建议高于以往研究手动轮椅推进运动数据时使用的角频率。本研究为独立于步态文献的手动轮椅推进运动学数据约简奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency analysis of kinematics of racing wheelchair propulsion.

The purpose of this study was to describe the frequency content of racing wheelchair propulsion motion data. The selection of the filter corner frequency in previous kinematic analyses of manual wheelchair propulsion was commonly based on gait literature. An estimate of the frequency separating the signal and the noise was determined to make recommendations for low-pass digital filters. The global (noncoordinate specific) cutoff frequency was 6 Hz. The directional cutoff frequencies were 5.1, 3.9, and 5.6 Hz, in the anterior-posterior, superior-inferior and medial-lateral directions, respectively. Recommendations for the corner frequencies of low-pass Butterworth digital filters based on the cutoff frequency are higher than the corner frequencies used in previous studies of manual wheelchair propulsion kinematic data. This study provides a foundation for the data reduction of manual wheelchair propulsion kinematic data that is independent of gait literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信