外周神经记录选择性的建模研究。

J Perez-Orive, D M Durand
{"title":"外周神经记录选择性的建模研究。","authors":"J Perez-Orive,&nbsp;D M Durand","doi":"10.1109/86.867874","DOIUrl":null,"url":null,"abstract":"<p><p>Recording of sensory information from afferent fibers can be used as feedback for the closed-loop control of neural prostheses. Clinical applications suggest that recording selectively from various nerve fascicles is important. Current nerve cuff electrodes are generally circular in shape and use a tripolar recording configuration. Preliminary experiments suggest that slowly changing the shape of the nerve to a flatter cross section can improve its selectivity. The objective of this work is to determine the effects of nerve reshaping and other cuff design parameters on the fascicular recording selectivity of a nerve cuff. A finite-element computer model of a multifasciculated nerve with different cuff electrodes was implemented to simulate the recordings. The model included the inhomogeneous and anisotropic properties of peripheral nerves. The recording selectivity was quantified with the use of a Selectivity Index. The results from the model provided information regarding the effect of using monopolar versus tripolar recording configurations, the length of the tripoles in tripolar recordings, the number of contacts that maximize the selectivity index, and the cuff length. Nerve reshaping was found to cause important recording selectivity improvements (106% average). These results provide specific criteria for the design of selectively recording nerve cuff electrodes.</p>","PeriodicalId":79442,"journal":{"name":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","volume":"8 3","pages":"320-9"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/86.867874","citationCount":"52","resultStr":"{\"title\":\"Modeling study of peripheral nerve recording selectivity.\",\"authors\":\"J Perez-Orive,&nbsp;D M Durand\",\"doi\":\"10.1109/86.867874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recording of sensory information from afferent fibers can be used as feedback for the closed-loop control of neural prostheses. Clinical applications suggest that recording selectively from various nerve fascicles is important. Current nerve cuff electrodes are generally circular in shape and use a tripolar recording configuration. Preliminary experiments suggest that slowly changing the shape of the nerve to a flatter cross section can improve its selectivity. The objective of this work is to determine the effects of nerve reshaping and other cuff design parameters on the fascicular recording selectivity of a nerve cuff. A finite-element computer model of a multifasciculated nerve with different cuff electrodes was implemented to simulate the recordings. The model included the inhomogeneous and anisotropic properties of peripheral nerves. The recording selectivity was quantified with the use of a Selectivity Index. The results from the model provided information regarding the effect of using monopolar versus tripolar recording configurations, the length of the tripoles in tripolar recordings, the number of contacts that maximize the selectivity index, and the cuff length. Nerve reshaping was found to cause important recording selectivity improvements (106% average). These results provide specific criteria for the design of selectively recording nerve cuff electrodes.</p>\",\"PeriodicalId\":79442,\"journal\":{\"name\":\"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society\",\"volume\":\"8 3\",\"pages\":\"320-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/86.867874\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/86.867874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/86.867874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

记录传入纤维的感觉信息可以作为神经假体闭环控制的反馈。临床应用表明选择性地记录不同的神经束是很重要的。目前的神经袖电极通常是圆形的,使用三极记录配置。初步实验表明,慢慢改变神经的形状,使其横截面更平坦,可以提高其选择性。这项工作的目的是确定神经重塑和其他袖带设计参数对神经袖的束状记录选择性的影响。采用不同袖带电极的多束神经的有限元计算机模型来模拟这些记录。该模型包括周围神经的非均匀性和各向异性。使用选择性指数对记录选择性进行量化。该模型的结果提供了关于单极与三极记录构型的影响、三极记录中三极的长度、最大化选择性指数的接触数以及袖口长度的信息。发现神经重塑可显著提高记录选择性(平均106%)。这些结果为选择性记录神经袖电极的设计提供了具体的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling study of peripheral nerve recording selectivity.

Recording of sensory information from afferent fibers can be used as feedback for the closed-loop control of neural prostheses. Clinical applications suggest that recording selectively from various nerve fascicles is important. Current nerve cuff electrodes are generally circular in shape and use a tripolar recording configuration. Preliminary experiments suggest that slowly changing the shape of the nerve to a flatter cross section can improve its selectivity. The objective of this work is to determine the effects of nerve reshaping and other cuff design parameters on the fascicular recording selectivity of a nerve cuff. A finite-element computer model of a multifasciculated nerve with different cuff electrodes was implemented to simulate the recordings. The model included the inhomogeneous and anisotropic properties of peripheral nerves. The recording selectivity was quantified with the use of a Selectivity Index. The results from the model provided information regarding the effect of using monopolar versus tripolar recording configurations, the length of the tripoles in tripolar recordings, the number of contacts that maximize the selectivity index, and the cuff length. Nerve reshaping was found to cause important recording selectivity improvements (106% average). These results provide specific criteria for the design of selectively recording nerve cuff electrodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信