疏水酶,真菌的外壳被解开了

Han A.B. Wösten , Marcel L. de Vocht
{"title":"疏水酶,真菌的外壳被解开了","authors":"Han A.B. Wösten ,&nbsp;Marcel L. de Vocht","doi":"10.1016/S0304-4157(00)00002-2","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrophobins are among the most surface active molecules and self-assemble at any hydrophilic–hydrophobic interface into an amphipathic film. These small secreted proteins of about 100 amino acids can be used to make hydrophilic surfaces hydrophobic and hydrophobic surfaces hydrophilic. Although differences in the biophysical properties of hydrophobins have not yet been related to differences in primary structure<span> it has been established that the N-terminal part, at least partly, determines wettability of the hydrophilic side of the assemblage, while the eight conserved cysteine residues that form four disulphide bridges prevent self-assembly of the hydrophobin in the absence of a hydrophilic–hydrophobic interface. Three conformations of class I hydrophobins have been identified: the monomeric state, which is soluble in water, the α-helical state, which is the result of self-assembly at a hydrophobic solid, and the β-sheet state, which is formed during self-assembly at the water–air interface. Experimental evidence strongly indicates that the α-helical state is an intermediate and that the β-sheet state is the end form of assembly. The latter state has a typical ultrastructure of a mosaic of 10 nm wide rodlets, which have been shown to resemble the amyloid fibrils.</span></p></div>","PeriodicalId":100168,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0304-4157(00)00002-2","citationCount":"336","resultStr":"{\"title\":\"Hydrophobins, the fungal coat unravelled\",\"authors\":\"Han A.B. Wösten ,&nbsp;Marcel L. de Vocht\",\"doi\":\"10.1016/S0304-4157(00)00002-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrophobins are among the most surface active molecules and self-assemble at any hydrophilic–hydrophobic interface into an amphipathic film. These small secreted proteins of about 100 amino acids can be used to make hydrophilic surfaces hydrophobic and hydrophobic surfaces hydrophilic. Although differences in the biophysical properties of hydrophobins have not yet been related to differences in primary structure<span> it has been established that the N-terminal part, at least partly, determines wettability of the hydrophilic side of the assemblage, while the eight conserved cysteine residues that form four disulphide bridges prevent self-assembly of the hydrophobin in the absence of a hydrophilic–hydrophobic interface. Three conformations of class I hydrophobins have been identified: the monomeric state, which is soluble in water, the α-helical state, which is the result of self-assembly at a hydrophobic solid, and the β-sheet state, which is formed during self-assembly at the water–air interface. Experimental evidence strongly indicates that the α-helical state is an intermediate and that the β-sheet state is the end form of assembly. The latter state has a typical ultrastructure of a mosaic of 10 nm wide rodlets, which have been shown to resemble the amyloid fibrils.</span></p></div>\",\"PeriodicalId\":100168,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0304-4157(00)00002-2\",\"citationCount\":\"336\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304415700000022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304415700000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 336

摘要

疏水分子是最具表面活性的分子之一,在任何亲疏水界面上自组装成两亲膜。这些由大约100个氨基酸组成的小分泌蛋白可以使亲水表面疏水,疏水表面亲水。虽然疏水蛋白生物物理性质的差异尚未与一级结构的差异相关,但已经确定n端部分(至少部分地)决定了组合中亲水性一侧的润湿性,而形成四个二硫桥的八个保守半胱氨酸残基在没有亲疏水界面的情况下阻止了疏水蛋白的自组装。ⅰ类疏水分子有三种构象:可溶于水的单体构象、在疏水固体上自组装形成的α-螺旋构象和在水-空气界面自组装形成的β-片状构象。实验证据有力地表明α-螺旋态是中间态,β-片态是组装的最终形式。后一种状态具有典型的10纳米宽小棒镶嵌的超微结构,已被证明类似于淀粉样蛋白原纤维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrophobins, the fungal coat unravelled

Hydrophobins are among the most surface active molecules and self-assemble at any hydrophilic–hydrophobic interface into an amphipathic film. These small secreted proteins of about 100 amino acids can be used to make hydrophilic surfaces hydrophobic and hydrophobic surfaces hydrophilic. Although differences in the biophysical properties of hydrophobins have not yet been related to differences in primary structure it has been established that the N-terminal part, at least partly, determines wettability of the hydrophilic side of the assemblage, while the eight conserved cysteine residues that form four disulphide bridges prevent self-assembly of the hydrophobin in the absence of a hydrophilic–hydrophobic interface. Three conformations of class I hydrophobins have been identified: the monomeric state, which is soluble in water, the α-helical state, which is the result of self-assembly at a hydrophobic solid, and the β-sheet state, which is formed during self-assembly at the water–air interface. Experimental evidence strongly indicates that the α-helical state is an intermediate and that the β-sheet state is the end form of assembly. The latter state has a typical ultrastructure of a mosaic of 10 nm wide rodlets, which have been shown to resemble the amyloid fibrils.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信