新型高分子生物材料——具有生物相容性表面的磷脂聚合物。

K Ishihara
{"title":"新型高分子生物材料——具有生物相容性表面的磷脂聚合物。","authors":"K Ishihara","doi":"10.1163/15685570052061946","DOIUrl":null,"url":null,"abstract":"<p><p>New biomedical polymers were designed with attention to the surface of biological membranes, i.e. the surface was completely covered with phospholipid polar groups. The polymers with a phosphorylcholine group, 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymerized with hydrophobic alkyl group, could interact with phospholipids in plasma selectively and strongly. The adsorbed phospholipids on the polymer surface were concentrated, organized each other and then formed a self-assembled biomimetic membrane surface. The surface showed excellent resistance for both protein adsorption and blood cell adhesion, i.e. the MPC polymer showed good blood compatibility. Based on these characteristics of the MPC polymer, it was applied to improve the biocompatibility and biostability of an implantable glucose sensor. The relative output current of the sensor covered with the MPC polymer membrane was maintained as the initial level even after 14 days of subcutaneous implantation in a rat. Therefore, it is concluded that the MPC polymer membrane is an excellent material for implantable biomedical devices.</p>","PeriodicalId":77139,"journal":{"name":"Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering","volume":"10 2","pages":"83-95"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/15685570052061946","citationCount":"30","resultStr":"{\"title\":\"New polymeric biomaterials-phospholipid polymers with a biocompatible surface.\",\"authors\":\"K Ishihara\",\"doi\":\"10.1163/15685570052061946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>New biomedical polymers were designed with attention to the surface of biological membranes, i.e. the surface was completely covered with phospholipid polar groups. The polymers with a phosphorylcholine group, 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymerized with hydrophobic alkyl group, could interact with phospholipids in plasma selectively and strongly. The adsorbed phospholipids on the polymer surface were concentrated, organized each other and then formed a self-assembled biomimetic membrane surface. The surface showed excellent resistance for both protein adsorption and blood cell adhesion, i.e. the MPC polymer showed good blood compatibility. Based on these characteristics of the MPC polymer, it was applied to improve the biocompatibility and biostability of an implantable glucose sensor. The relative output current of the sensor covered with the MPC polymer membrane was maintained as the initial level even after 14 days of subcutaneous implantation in a rat. Therefore, it is concluded that the MPC polymer membrane is an excellent material for implantable biomedical devices.</p>\",\"PeriodicalId\":77139,\"journal\":{\"name\":\"Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering\",\"volume\":\"10 2\",\"pages\":\"83-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1163/15685570052061946\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1163/15685570052061946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/15685570052061946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

新型生物医用高分子材料的设计关注于生物膜的表面,即表面被磷脂极性基团完全覆盖。含有磷胆碱基团的2-甲基丙烯酰氧乙基磷胆碱(MPC)与疏水性烷基共聚,可与血浆磷脂选择性强相互作用。高分子表面吸附的磷脂被浓缩,相互组织,形成自组装的仿生膜表面。表面对蛋白质吸附和血细胞粘附均表现出优异的抗性,即MPC聚合物具有良好的血液相容性。基于MPC聚合物的这些特性,将其应用于提高植入式葡萄糖传感器的生物相容性和生物稳定性。即使在大鼠皮下植入14天后,覆盖MPC聚合物膜的传感器的相对输出电流仍保持在初始水平。因此,MPC聚合物膜是一种用于植入式生物医学装置的优良材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New polymeric biomaterials-phospholipid polymers with a biocompatible surface.

New biomedical polymers were designed with attention to the surface of biological membranes, i.e. the surface was completely covered with phospholipid polar groups. The polymers with a phosphorylcholine group, 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymerized with hydrophobic alkyl group, could interact with phospholipids in plasma selectively and strongly. The adsorbed phospholipids on the polymer surface were concentrated, organized each other and then formed a self-assembled biomimetic membrane surface. The surface showed excellent resistance for both protein adsorption and blood cell adhesion, i.e. the MPC polymer showed good blood compatibility. Based on these characteristics of the MPC polymer, it was applied to improve the biocompatibility and biostability of an implantable glucose sensor. The relative output current of the sensor covered with the MPC polymer membrane was maintained as the initial level even after 14 days of subcutaneous implantation in a rat. Therefore, it is concluded that the MPC polymer membrane is an excellent material for implantable biomedical devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信