研究皮层神经假体的实时控制。

R E Isaacs, D J Weber, A B Schwartz
{"title":"研究皮层神经假体的实时控制。","authors":"R E Isaacs,&nbsp;D J Weber,&nbsp;A B Schwartz","doi":"10.1109/86.847814","DOIUrl":null,"url":null,"abstract":"<p><p>Implantable devices that interact directly with the human nervous system have been gaining acceptance in the field of medicine since the 1960's. More recently, as is noted by the FDA approval of a deep brain stimulator for movement disorders, interest has shifted toward direct communication with the central nervous system (CNS). Deep brain stimulation (DBS) can have a remarkable effect on the lives of those with certain types of disabilities such as Parkinson's disease, Essential Tremor, and dystonia. To correct for many of the motor impairments not treatable by DBS (e.g. quadriplegia), it would be desirable to extract from the CNS a control signal for movement. A direct interface with motor cortical neurons could provide an optimal signal for restoring movement. In order to accomplish this, a real-time conversion of simultaneously recorded neural activity to an online command for movement is required. A system has been established to isolate the cellular activity of a group of motor neurons and interpret their movement-related information with a minimal delay. The real-time interpretation of cortical activity on a millisecond time scale provides an integral first step in the development of a direct brain-computer interface (BCI).</p>","PeriodicalId":79442,"journal":{"name":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","volume":"8 2","pages":"196-8"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/86.847814","citationCount":"107","resultStr":"{\"title\":\"Work toward real-time control of a cortical neural prothesis.\",\"authors\":\"R E Isaacs,&nbsp;D J Weber,&nbsp;A B Schwartz\",\"doi\":\"10.1109/86.847814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Implantable devices that interact directly with the human nervous system have been gaining acceptance in the field of medicine since the 1960's. More recently, as is noted by the FDA approval of a deep brain stimulator for movement disorders, interest has shifted toward direct communication with the central nervous system (CNS). Deep brain stimulation (DBS) can have a remarkable effect on the lives of those with certain types of disabilities such as Parkinson's disease, Essential Tremor, and dystonia. To correct for many of the motor impairments not treatable by DBS (e.g. quadriplegia), it would be desirable to extract from the CNS a control signal for movement. A direct interface with motor cortical neurons could provide an optimal signal for restoring movement. In order to accomplish this, a real-time conversion of simultaneously recorded neural activity to an online command for movement is required. A system has been established to isolate the cellular activity of a group of motor neurons and interpret their movement-related information with a minimal delay. The real-time interpretation of cortical activity on a millisecond time scale provides an integral first step in the development of a direct brain-computer interface (BCI).</p>\",\"PeriodicalId\":79442,\"journal\":{\"name\":\"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society\",\"volume\":\"8 2\",\"pages\":\"196-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/86.847814\",\"citationCount\":\"107\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/86.847814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/86.847814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107

摘要

自20世纪60年代以来,直接与人体神经系统相互作用的植入式装置已经在医学领域获得认可。最近,正如FDA批准了一种用于运动障碍的深部脑刺激器所指出的那样,人们的兴趣已经转向了与中枢神经系统(CNS)的直接交流。脑深部电刺激(DBS)对那些患有帕金森病、特发性震颤和肌张力障碍等残疾的人的生活有显著的影响。为了纠正DBS无法治疗的许多运动障碍(例如四肢瘫痪),从中枢神经系统中提取运动控制信号是可取的。与运动皮质神经元的直接接口可以为恢复运动提供最佳信号。为了实现这一点,需要将同时记录的神经活动实时转换为在线运动命令。已经建立了一个系统来隔离一组运动神经元的细胞活动,并以最小的延迟解释它们的运动相关信息。在毫秒时间尺度上对皮层活动的实时解释为直接脑机接口(BCI)的发展提供了不可或缺的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Work toward real-time control of a cortical neural prothesis.

Implantable devices that interact directly with the human nervous system have been gaining acceptance in the field of medicine since the 1960's. More recently, as is noted by the FDA approval of a deep brain stimulator for movement disorders, interest has shifted toward direct communication with the central nervous system (CNS). Deep brain stimulation (DBS) can have a remarkable effect on the lives of those with certain types of disabilities such as Parkinson's disease, Essential Tremor, and dystonia. To correct for many of the motor impairments not treatable by DBS (e.g. quadriplegia), it would be desirable to extract from the CNS a control signal for movement. A direct interface with motor cortical neurons could provide an optimal signal for restoring movement. In order to accomplish this, a real-time conversion of simultaneously recorded neural activity to an online command for movement is required. A system has been established to isolate the cellular activity of a group of motor neurons and interpret their movement-related information with a minimal delay. The real-time interpretation of cortical activity on a millisecond time scale provides an integral first step in the development of a direct brain-computer interface (BCI).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信