想象手部运动产生的低分辨率脑电图模式的线性分类。

F Babiloni, F Cincotti, L Lazzarini, J Millán, J Mouriño, M Varsta, J Heikkonen, L Bianchi, M G Marciani
{"title":"想象手部运动产生的低分辨率脑电图模式的线性分类。","authors":"F Babiloni,&nbsp;F Cincotti,&nbsp;L Lazzarini,&nbsp;J Millán,&nbsp;J Mouriño,&nbsp;M Varsta,&nbsp;J Heikkonen,&nbsp;L Bianchi,&nbsp;M G Marciani","doi":"10.1109/86.847810","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalograph (EEG)-based brain-computer interfaces (BCI's) require on-line detection of mental states from spontaneous EEG signals. In this framework, surface Laplacian (SL) transformation of EEG signals has proved to improve the recognition scores of imagined motor activity. The results we obtained in the first year of an European project named adaptive brain interfaces (ABI) suggest that: 1) the detection of mental imagined activity can be obtained by using the signal space projection (SSP) method as a classifier and 2) a particular type of electrodes can be used in such a BCI device, reconciling the benefits of SL waveforms and the need for the use of few electrodes. Recognition of mental activity was attempted on both raw and SL-transformed EEG data from five healthy people performing two mental tasks, namely imagined right and left hand movements.</p>","PeriodicalId":79442,"journal":{"name":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","volume":"8 2","pages":"186-8"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/86.847810","citationCount":"172","resultStr":"{\"title\":\"Linear classification of low-resolution EEG patterns produced by imagined hand movements.\",\"authors\":\"F Babiloni,&nbsp;F Cincotti,&nbsp;L Lazzarini,&nbsp;J Millán,&nbsp;J Mouriño,&nbsp;M Varsta,&nbsp;J Heikkonen,&nbsp;L Bianchi,&nbsp;M G Marciani\",\"doi\":\"10.1109/86.847810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electroencephalograph (EEG)-based brain-computer interfaces (BCI's) require on-line detection of mental states from spontaneous EEG signals. In this framework, surface Laplacian (SL) transformation of EEG signals has proved to improve the recognition scores of imagined motor activity. The results we obtained in the first year of an European project named adaptive brain interfaces (ABI) suggest that: 1) the detection of mental imagined activity can be obtained by using the signal space projection (SSP) method as a classifier and 2) a particular type of electrodes can be used in such a BCI device, reconciling the benefits of SL waveforms and the need for the use of few electrodes. Recognition of mental activity was attempted on both raw and SL-transformed EEG data from five healthy people performing two mental tasks, namely imagined right and left hand movements.</p>\",\"PeriodicalId\":79442,\"journal\":{\"name\":\"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society\",\"volume\":\"8 2\",\"pages\":\"186-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/86.847810\",\"citationCount\":\"172\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/86.847810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/86.847810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 172

摘要

基于脑电图(EEG)的脑机接口(BCI)要求从自发脑电图信号中在线检测精神状态。在此框架下,脑电信号的表面拉普拉斯变换被证明可以提高想象运动活动的识别分数。我们在一个名为自适应脑接口(ABI)的欧洲项目的第一年获得的结果表明:1)可以通过使用信号空间投影(SSP)方法作为分类器来检测心理想象活动;2)可以在这样的脑接口设备中使用特定类型的电极,以协调SL波形的好处和使用少量电极的需求。对五名健康人进行两项脑力任务,即想象的右手和左手运动,分别对原始和转换后的脑电图数据进行脑活动识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear classification of low-resolution EEG patterns produced by imagined hand movements.

Electroencephalograph (EEG)-based brain-computer interfaces (BCI's) require on-line detection of mental states from spontaneous EEG signals. In this framework, surface Laplacian (SL) transformation of EEG signals has proved to improve the recognition scores of imagined motor activity. The results we obtained in the first year of an European project named adaptive brain interfaces (ABI) suggest that: 1) the detection of mental imagined activity can be obtained by using the signal space projection (SSP) method as a classifier and 2) a particular type of electrodes can be used in such a BCI device, reconciling the benefits of SL waveforms and the need for the use of few electrodes. Recognition of mental activity was attempted on both raw and SL-transformed EEG data from five healthy people performing two mental tasks, namely imagined right and left hand movements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信