{"title":"氧化预处理对Ni/SiO2催化剂氢外溢的影响","authors":"Abdel-Ghani Boudjahem , Mohammed M. Bettahar","doi":"10.1016/j.molcata.2016.11.014","DOIUrl":null,"url":null,"abstract":"<div><p>The chemisorption and hydrogenating properties of Ni/SiO<sub>2</sub> catalysts prepared by the hydrazine method then calcined at 400<!--> <!-->°C with various times were investigated. Metal dispersion and activity in benzene hydrogenation increased with increasing calcination time whereas desorbed amounts of hydrogen significantly decreased. Dilution of a calcined sample by the support led to a sharp increase of both hydrogen storage by the support and catalytic activity. Metal dispersion and hydrogen storage capacity influenced the reaction mechanisms of hydrogenation of benzene which, therefore, is believed to occur on the metal phase or/and on the support by the hydrogen spillover mechanism. The metal active phase would be composed of an ensemble of metallic and oxidized nickel species.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 190-197"},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.014","citationCount":"20","resultStr":"{\"title\":\"Effect of oxidative pre-treatment on hydrogen spillover for a Ni/SiO2 catalyst\",\"authors\":\"Abdel-Ghani Boudjahem , Mohammed M. Bettahar\",\"doi\":\"10.1016/j.molcata.2016.11.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The chemisorption and hydrogenating properties of Ni/SiO<sub>2</sub> catalysts prepared by the hydrazine method then calcined at 400<!--> <!-->°C with various times were investigated. Metal dispersion and activity in benzene hydrogenation increased with increasing calcination time whereas desorbed amounts of hydrogen significantly decreased. Dilution of a calcined sample by the support led to a sharp increase of both hydrogen storage by the support and catalytic activity. Metal dispersion and hydrogen storage capacity influenced the reaction mechanisms of hydrogenation of benzene which, therefore, is believed to occur on the metal phase or/and on the support by the hydrogen spillover mechanism. The metal active phase would be composed of an ensemble of metallic and oxidized nickel species.</p></div>\",\"PeriodicalId\":370,\"journal\":{\"name\":\"Journal of Molecular Catalysis A: Chemical\",\"volume\":\"426 \",\"pages\":\"Pages 190-197\"},\"PeriodicalIF\":5.0620,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.014\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis A: Chemical\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381116916304885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381116916304885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of oxidative pre-treatment on hydrogen spillover for a Ni/SiO2 catalyst
The chemisorption and hydrogenating properties of Ni/SiO2 catalysts prepared by the hydrazine method then calcined at 400 °C with various times were investigated. Metal dispersion and activity in benzene hydrogenation increased with increasing calcination time whereas desorbed amounts of hydrogen significantly decreased. Dilution of a calcined sample by the support led to a sharp increase of both hydrogen storage by the support and catalytic activity. Metal dispersion and hydrogen storage capacity influenced the reaction mechanisms of hydrogenation of benzene which, therefore, is believed to occur on the metal phase or/and on the support by the hydrogen spillover mechanism. The metal active phase would be composed of an ensemble of metallic and oxidized nickel species.
期刊介绍:
The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.