{"title":"利用二维活动轮廓线对层析数据进行三维重建","authors":"Ronald Chung , Chi-kin Ho","doi":"10.1006/cbmr.2000.1541","DOIUrl":null,"url":null,"abstract":"<div><p>Reconstructing three-dimensional (3-D) shapes of structures like internal organs from tomographic data is an important problem in medical imaging. Various forms of the deformable surface model have been proposed to tackle it, but they are either computationally expensive or limited to tubular shapes. In this paper a 3-D reconstruction mechanism that requires only 2-D deformations is proposed. Advantages of the proposed model include that it is conformable to any 3-D shape, efficient, and highly parallelizable. Most importantly, it requires from the user an initial 2-D contour on only one of the tomograph slices to start with. Experimental results are shown to illustrate the performance of the model.</p></div>","PeriodicalId":75733,"journal":{"name":"Computers and biomedical research, an international journal","volume":"33 3","pages":"Pages 186-210"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/cbmr.2000.1541","citationCount":"12","resultStr":"{\"title\":\"3-D Reconstruction from Tomographic Data Using 2-D Active Contours\",\"authors\":\"Ronald Chung , Chi-kin Ho\",\"doi\":\"10.1006/cbmr.2000.1541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reconstructing three-dimensional (3-D) shapes of structures like internal organs from tomographic data is an important problem in medical imaging. Various forms of the deformable surface model have been proposed to tackle it, but they are either computationally expensive or limited to tubular shapes. In this paper a 3-D reconstruction mechanism that requires only 2-D deformations is proposed. Advantages of the proposed model include that it is conformable to any 3-D shape, efficient, and highly parallelizable. Most importantly, it requires from the user an initial 2-D contour on only one of the tomograph slices to start with. Experimental results are shown to illustrate the performance of the model.</p></div>\",\"PeriodicalId\":75733,\"journal\":{\"name\":\"Computers and biomedical research, an international journal\",\"volume\":\"33 3\",\"pages\":\"Pages 186-210\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/cbmr.2000.1541\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and biomedical research, an international journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010480900915416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and biomedical research, an international journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010480900915416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3-D Reconstruction from Tomographic Data Using 2-D Active Contours
Reconstructing three-dimensional (3-D) shapes of structures like internal organs from tomographic data is an important problem in medical imaging. Various forms of the deformable surface model have been proposed to tackle it, but they are either computationally expensive or limited to tubular shapes. In this paper a 3-D reconstruction mechanism that requires only 2-D deformations is proposed. Advantages of the proposed model include that it is conformable to any 3-D shape, efficient, and highly parallelizable. Most importantly, it requires from the user an initial 2-D contour on only one of the tomograph slices to start with. Experimental results are shown to illustrate the performance of the model.