S A Fullerton, A A Samadi, D G Tortorelis, M S Choudhury, C Mallouh, H Tazaki, S Konno
{"title":"β -葡聚糖(舞茸多糖)诱导人前列腺癌细胞凋亡的研究。","authors":"S A Fullerton, A A Samadi, D G Tortorelis, M S Choudhury, C Mallouh, H Tazaki, S Konno","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To explore more effective treatment for hormone-refractory prostate cancer, we investigated the potential antitumor effect of beta-glucan, a polysaccharide of the Maitake mushroom, on prostatic cancer cells in vitro.</p><p><strong>Materials and methods: </strong>Human prostate cancer PC-3 cells were treated with various concentrations of the highly purified beta-glucan preparation Grifron-D(R) (GD), and viability was determined at 24 h. Lipid peroxidation (LPO) assay and in situ hybridization (ISH) were performed to unravel the antitumor mechanism of GD.</p><p><strong>Results: </strong>A dose-response study showed that almost complete (>95%) cell death was attained in 24 h with GD > or = 480 microg/mL. Combinations of GD in a concentration as low as 30 to 60 microg/mL with 200 microM vitamin C were as effective as GD alone at 480 microg/mL, inducing >90% cytotoxic cell death. Simultaneous use with various anticancer drugs showed little potentiation of their efficacy except for the carmustine/GD combination (approximately 90% reduction in cell viability). The significantly (twofold) elevated LPO level and positive ISH staining of GD-treated cells indicated oxidative membrane damage resulting in apoptotic cell death.</p><p><strong>Conclusion: </strong>A bioactive beta-glucan from the Maitake mushroom has a cytotoxic effect, presumably through oxidative stress, on prostatic cancer cells in vitro, leading to apoptosis. Potentiation of GD action by vitamin C and the chemosensitizing effect of GD on carmustine may also have clinical implications. Therefore, this unique mushroom polysaccharide may have great a potential as an alternative therapeutic modality for prostate cancer.</p>","PeriodicalId":80296,"journal":{"name":"Molecular urology","volume":"4 1","pages":"7-13"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induction of apoptosis in human prostatic cancer cells with beta-glucan (Maitake mushroom polysaccharide).\",\"authors\":\"S A Fullerton, A A Samadi, D G Tortorelis, M S Choudhury, C Mallouh, H Tazaki, S Konno\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To explore more effective treatment for hormone-refractory prostate cancer, we investigated the potential antitumor effect of beta-glucan, a polysaccharide of the Maitake mushroom, on prostatic cancer cells in vitro.</p><p><strong>Materials and methods: </strong>Human prostate cancer PC-3 cells were treated with various concentrations of the highly purified beta-glucan preparation Grifron-D(R) (GD), and viability was determined at 24 h. Lipid peroxidation (LPO) assay and in situ hybridization (ISH) were performed to unravel the antitumor mechanism of GD.</p><p><strong>Results: </strong>A dose-response study showed that almost complete (>95%) cell death was attained in 24 h with GD > or = 480 microg/mL. Combinations of GD in a concentration as low as 30 to 60 microg/mL with 200 microM vitamin C were as effective as GD alone at 480 microg/mL, inducing >90% cytotoxic cell death. Simultaneous use with various anticancer drugs showed little potentiation of their efficacy except for the carmustine/GD combination (approximately 90% reduction in cell viability). The significantly (twofold) elevated LPO level and positive ISH staining of GD-treated cells indicated oxidative membrane damage resulting in apoptotic cell death.</p><p><strong>Conclusion: </strong>A bioactive beta-glucan from the Maitake mushroom has a cytotoxic effect, presumably through oxidative stress, on prostatic cancer cells in vitro, leading to apoptosis. Potentiation of GD action by vitamin C and the chemosensitizing effect of GD on carmustine may also have clinical implications. Therefore, this unique mushroom polysaccharide may have great a potential as an alternative therapeutic modality for prostate cancer.</p>\",\"PeriodicalId\":80296,\"journal\":{\"name\":\"Molecular urology\",\"volume\":\"4 1\",\"pages\":\"7-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular urology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular urology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Induction of apoptosis in human prostatic cancer cells with beta-glucan (Maitake mushroom polysaccharide).
Purpose: To explore more effective treatment for hormone-refractory prostate cancer, we investigated the potential antitumor effect of beta-glucan, a polysaccharide of the Maitake mushroom, on prostatic cancer cells in vitro.
Materials and methods: Human prostate cancer PC-3 cells were treated with various concentrations of the highly purified beta-glucan preparation Grifron-D(R) (GD), and viability was determined at 24 h. Lipid peroxidation (LPO) assay and in situ hybridization (ISH) were performed to unravel the antitumor mechanism of GD.
Results: A dose-response study showed that almost complete (>95%) cell death was attained in 24 h with GD > or = 480 microg/mL. Combinations of GD in a concentration as low as 30 to 60 microg/mL with 200 microM vitamin C were as effective as GD alone at 480 microg/mL, inducing >90% cytotoxic cell death. Simultaneous use with various anticancer drugs showed little potentiation of their efficacy except for the carmustine/GD combination (approximately 90% reduction in cell viability). The significantly (twofold) elevated LPO level and positive ISH staining of GD-treated cells indicated oxidative membrane damage resulting in apoptotic cell death.
Conclusion: A bioactive beta-glucan from the Maitake mushroom has a cytotoxic effect, presumably through oxidative stress, on prostatic cancer cells in vitro, leading to apoptosis. Potentiation of GD action by vitamin C and the chemosensitizing effect of GD on carmustine may also have clinical implications. Therefore, this unique mushroom polysaccharide may have great a potential as an alternative therapeutic modality for prostate cancer.