{"title":"Sigma受体:最新进展和新的临床潜力","authors":"Wayne D Bowen","doi":"10.1016/S0031-6865(99)00034-5","DOIUrl":null,"url":null,"abstract":"<div><p><span>Several recent advances are leading to a better understanding of sigma receptors. Here we focus on our recent findings regarding cellular functions of sigma-2 receptors and discuss their possible clinical implications. Agonists at sigma-2 receptors induced changes in cell morphology and apoptosis in various cell types. Sigma-2 receptor activation produced both transient and sustained increases in [Ca</span><sup>++</sup>]i, derived from different intracellular stores. These changes in [Ca<sup>++</sup><span>]i and cytotoxic effects are mediated by intracellular sigma-2 receptors. Sigma-2 agonists induced apoptosis in drug-resistant cancer cells, enhanced the potency of DNA damaging agents, and down-regulated expression of p-glycoprotein mRNA. Thus, sigma-2 receptor agonists may be useful in treatment of drug-resistant cancers. Sigma radioligands have been used in tumor imaging. We also discuss how sigma-2 antagonists might prevent the irreversible motor side effects of typical neuroleptics. Sigma-2 receptors may subserve a novel signalling pathway to apoptosis, involved in regulation of cell proliferation and/or viability.</span></p></div>","PeriodicalId":19830,"journal":{"name":"Pharmaceutica acta Helvetiae","volume":"74 2","pages":"Pages 211-218"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0031-6865(99)00034-5","citationCount":"233","resultStr":"{\"title\":\"Sigma receptors: recent advances and new clinical potentials\",\"authors\":\"Wayne D Bowen\",\"doi\":\"10.1016/S0031-6865(99)00034-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Several recent advances are leading to a better understanding of sigma receptors. Here we focus on our recent findings regarding cellular functions of sigma-2 receptors and discuss their possible clinical implications. Agonists at sigma-2 receptors induced changes in cell morphology and apoptosis in various cell types. Sigma-2 receptor activation produced both transient and sustained increases in [Ca</span><sup>++</sup>]i, derived from different intracellular stores. These changes in [Ca<sup>++</sup><span>]i and cytotoxic effects are mediated by intracellular sigma-2 receptors. Sigma-2 agonists induced apoptosis in drug-resistant cancer cells, enhanced the potency of DNA damaging agents, and down-regulated expression of p-glycoprotein mRNA. Thus, sigma-2 receptor agonists may be useful in treatment of drug-resistant cancers. Sigma radioligands have been used in tumor imaging. We also discuss how sigma-2 antagonists might prevent the irreversible motor side effects of typical neuroleptics. Sigma-2 receptors may subserve a novel signalling pathway to apoptosis, involved in regulation of cell proliferation and/or viability.</span></p></div>\",\"PeriodicalId\":19830,\"journal\":{\"name\":\"Pharmaceutica acta Helvetiae\",\"volume\":\"74 2\",\"pages\":\"Pages 211-218\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0031-6865(99)00034-5\",\"citationCount\":\"233\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutica acta Helvetiae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031686599000345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutica acta Helvetiae","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031686599000345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sigma receptors: recent advances and new clinical potentials
Several recent advances are leading to a better understanding of sigma receptors. Here we focus on our recent findings regarding cellular functions of sigma-2 receptors and discuss their possible clinical implications. Agonists at sigma-2 receptors induced changes in cell morphology and apoptosis in various cell types. Sigma-2 receptor activation produced both transient and sustained increases in [Ca++]i, derived from different intracellular stores. These changes in [Ca++]i and cytotoxic effects are mediated by intracellular sigma-2 receptors. Sigma-2 agonists induced apoptosis in drug-resistant cancer cells, enhanced the potency of DNA damaging agents, and down-regulated expression of p-glycoprotein mRNA. Thus, sigma-2 receptor agonists may be useful in treatment of drug-resistant cancers. Sigma radioligands have been used in tumor imaging. We also discuss how sigma-2 antagonists might prevent the irreversible motor side effects of typical neuroleptics. Sigma-2 receptors may subserve a novel signalling pathway to apoptosis, involved in regulation of cell proliferation and/or viability.