{"title":"星形胶质细胞调节信号素诱导的钙浓度变化和神经元存活。","authors":"C J Yao, C W Lin, S Y Lin-Shiau","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>When mature cerebellar granule neurons (CGN) grown in high K+ (25 mM K+, HK)-serum containing medium are subjected to the HK/serum deprivation, they are destined for neuronal death. In this study, we attempted to elucidate the roles of endoplasmic reticular (ER) Ca2+-store and co-cultured astrocytes in HK/serum deprivation induced neuronal death. Thapsigargin (TG), an inhibitor of ER Ca2+-ATPase was simultaneously applied with normal K+ (5 mM K+, NK) serum free medium, and its effects on neuronal death in either astrocyte-poor or astrocyterich culture were examined. By means of the fura-2 microfluorimetric technique, we monitored the changes of the intracellular Ca2+ concentration, [Ca2+]i, associated with neuronal death under various treatments. The results obtained showed that in astrocyte-poor cultures of mature CGN (10 days in vitro, DIV), the basal level of [Ca2+]i markedly decreased from 184 +/- 5 to 89.7 +/- 5 nM 24 h after HK/serum deprivation. Although treatment with TG slightly increased the [Ca2+]i to 117.6 +/- 4 nM, the survival rate of the neurons was even worse; it was reduced from 49 +/- 4% to 28 +/- 2%. In the astrocyte-rich cultures, HK/serum deprivation also caused a profound reduction of neuronal [Ca2+]i, from 166 +/- 3 to 90.2 +/- 6 nM, accompanied by even more serious neuronal death (95.5 +/- 1%). On the other hand, treatment with TG in astrocyterich cultures further lowered the [Ca2+]i to 65 +/- 2 nM but markedly improved the neuronal survival rate from 4.5 +/- 1% to 60 +/- 2% in a concentration-dependent manner. The strong implication of these findings is that ER Ca2+-store and astrocytes participate in modulating the responses of neurons to stress stimulation.</p>","PeriodicalId":20569,"journal":{"name":"Proceedings of the National Science Council, Republic of China. Part B, Life sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astrocytes modulate thapsigargin-induced changes in calcium concentration and neuronal survival.\",\"authors\":\"C J Yao, C W Lin, S Y Lin-Shiau\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When mature cerebellar granule neurons (CGN) grown in high K+ (25 mM K+, HK)-serum containing medium are subjected to the HK/serum deprivation, they are destined for neuronal death. In this study, we attempted to elucidate the roles of endoplasmic reticular (ER) Ca2+-store and co-cultured astrocytes in HK/serum deprivation induced neuronal death. Thapsigargin (TG), an inhibitor of ER Ca2+-ATPase was simultaneously applied with normal K+ (5 mM K+, NK) serum free medium, and its effects on neuronal death in either astrocyte-poor or astrocyterich culture were examined. By means of the fura-2 microfluorimetric technique, we monitored the changes of the intracellular Ca2+ concentration, [Ca2+]i, associated with neuronal death under various treatments. The results obtained showed that in astrocyte-poor cultures of mature CGN (10 days in vitro, DIV), the basal level of [Ca2+]i markedly decreased from 184 +/- 5 to 89.7 +/- 5 nM 24 h after HK/serum deprivation. Although treatment with TG slightly increased the [Ca2+]i to 117.6 +/- 4 nM, the survival rate of the neurons was even worse; it was reduced from 49 +/- 4% to 28 +/- 2%. In the astrocyte-rich cultures, HK/serum deprivation also caused a profound reduction of neuronal [Ca2+]i, from 166 +/- 3 to 90.2 +/- 6 nM, accompanied by even more serious neuronal death (95.5 +/- 1%). On the other hand, treatment with TG in astrocyterich cultures further lowered the [Ca2+]i to 65 +/- 2 nM but markedly improved the neuronal survival rate from 4.5 +/- 1% to 60 +/- 2% in a concentration-dependent manner. The strong implication of these findings is that ER Ca2+-store and astrocytes participate in modulating the responses of neurons to stress stimulation.</p>\",\"PeriodicalId\":20569,\"journal\":{\"name\":\"Proceedings of the National Science Council, Republic of China. Part B, Life sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Science Council, Republic of China. Part B, Life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Science Council, Republic of China. Part B, Life sciences","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Astrocytes modulate thapsigargin-induced changes in calcium concentration and neuronal survival.
When mature cerebellar granule neurons (CGN) grown in high K+ (25 mM K+, HK)-serum containing medium are subjected to the HK/serum deprivation, they are destined for neuronal death. In this study, we attempted to elucidate the roles of endoplasmic reticular (ER) Ca2+-store and co-cultured astrocytes in HK/serum deprivation induced neuronal death. Thapsigargin (TG), an inhibitor of ER Ca2+-ATPase was simultaneously applied with normal K+ (5 mM K+, NK) serum free medium, and its effects on neuronal death in either astrocyte-poor or astrocyterich culture were examined. By means of the fura-2 microfluorimetric technique, we monitored the changes of the intracellular Ca2+ concentration, [Ca2+]i, associated with neuronal death under various treatments. The results obtained showed that in astrocyte-poor cultures of mature CGN (10 days in vitro, DIV), the basal level of [Ca2+]i markedly decreased from 184 +/- 5 to 89.7 +/- 5 nM 24 h after HK/serum deprivation. Although treatment with TG slightly increased the [Ca2+]i to 117.6 +/- 4 nM, the survival rate of the neurons was even worse; it was reduced from 49 +/- 4% to 28 +/- 2%. In the astrocyte-rich cultures, HK/serum deprivation also caused a profound reduction of neuronal [Ca2+]i, from 166 +/- 3 to 90.2 +/- 6 nM, accompanied by even more serious neuronal death (95.5 +/- 1%). On the other hand, treatment with TG in astrocyterich cultures further lowered the [Ca2+]i to 65 +/- 2 nM but markedly improved the neuronal survival rate from 4.5 +/- 1% to 60 +/- 2% in a concentration-dependent manner. The strong implication of these findings is that ER Ca2+-store and astrocytes participate in modulating the responses of neurons to stress stimulation.