母体接触雌激素化学物质后雄性后代的生殖畸形。

C Gupta
{"title":"母体接触雌激素化学物质后雄性后代的生殖畸形。","authors":"C Gupta","doi":"10.1046/j.1525-1373.2000.22402.x","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, significant concerns have been placed on the widespread use of chemicals with persistent estrogenic activity for their long-term effects on human health. In this communication, we investigated whether fetal exposure to some of these chemicals at doses consumed by people, has any long-term effect on the reproductive functions of the male offspring. Thus, time-pregnant CD-1 mice were fed diethylstilbestrol (DES), bisphenol A (BPA), and aroclor (aroclor 1016) at an average concentration of 100 ng/kg/day, 50 microg/kg/day, and 50 microg/kg/day, respectively, during Days 16-18 of gestation. A high dose of DES (200 microg/kg/day) was also tested to compare the results of the current study with those of others using the high dose only. The offspring were examined at Day 3, Day 21, and Day 60 following birth. We demonstrated that BPA, aroclor, and the lower dose of DES enhanced anogenital distance, increased prostate size, and decreased epididymal weight. No effect was found on the testicular weight or size. The chemicals also permanently increased androgen receptor (AR) binding activity of the prostate at this dosage. This is the first demonstration that environmental chemicals program AR function permanently at the dosage consumed by the general population. The higher dosage of DES, on the other hand, produced an opposite effect, decreasing prostate weight, prostate AR binding, and anogenital distance, thus confirming the previous reports. To investigate whether the above mentioned effects of the chemicals represent direct or indirect effects, we also tested the effect of the chemicals on prostate development in vitro. Thus fetal urogenital sinus (UGS), isolated at the 17th day of gestation was cultured with the chemicals in the presence and absence of testosterone (10 ng/ml) for 6 days, and prostate growth was monitored by determining the size and branching of the specimen following histology. Results showed that these chemicals induced prostate growth in the presence and absence of testosterone. They also increased androgen-binding activity. Thus, the results of the in vivo studies were reproduced in the in vitro experiments, suggesting a direct effect of these chemicals on the development of fetal reproductive organs. This is the first demonstration that estrogenic chemicals induce reproductive malformation by direct interference with the fetal reproductive organs and not by interfering with the maternal or fetal endocrine system. The chemicals are able to induce malformation even in the absence of fetal testosterone; however, they are more effective in the presence of testosterone.</p>","PeriodicalId":20675,"journal":{"name":"Proceedings of the Society for Experimental Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"150","resultStr":"{\"title\":\"Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals.\",\"authors\":\"C Gupta\",\"doi\":\"10.1046/j.1525-1373.2000.22402.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, significant concerns have been placed on the widespread use of chemicals with persistent estrogenic activity for their long-term effects on human health. In this communication, we investigated whether fetal exposure to some of these chemicals at doses consumed by people, has any long-term effect on the reproductive functions of the male offspring. Thus, time-pregnant CD-1 mice were fed diethylstilbestrol (DES), bisphenol A (BPA), and aroclor (aroclor 1016) at an average concentration of 100 ng/kg/day, 50 microg/kg/day, and 50 microg/kg/day, respectively, during Days 16-18 of gestation. A high dose of DES (200 microg/kg/day) was also tested to compare the results of the current study with those of others using the high dose only. The offspring were examined at Day 3, Day 21, and Day 60 following birth. We demonstrated that BPA, aroclor, and the lower dose of DES enhanced anogenital distance, increased prostate size, and decreased epididymal weight. No effect was found on the testicular weight or size. The chemicals also permanently increased androgen receptor (AR) binding activity of the prostate at this dosage. This is the first demonstration that environmental chemicals program AR function permanently at the dosage consumed by the general population. The higher dosage of DES, on the other hand, produced an opposite effect, decreasing prostate weight, prostate AR binding, and anogenital distance, thus confirming the previous reports. To investigate whether the above mentioned effects of the chemicals represent direct or indirect effects, we also tested the effect of the chemicals on prostate development in vitro. Thus fetal urogenital sinus (UGS), isolated at the 17th day of gestation was cultured with the chemicals in the presence and absence of testosterone (10 ng/ml) for 6 days, and prostate growth was monitored by determining the size and branching of the specimen following histology. Results showed that these chemicals induced prostate growth in the presence and absence of testosterone. They also increased androgen-binding activity. Thus, the results of the in vivo studies were reproduced in the in vitro experiments, suggesting a direct effect of these chemicals on the development of fetal reproductive organs. This is the first demonstration that estrogenic chemicals induce reproductive malformation by direct interference with the fetal reproductive organs and not by interfering with the maternal or fetal endocrine system. The chemicals are able to induce malformation even in the absence of fetal testosterone; however, they are more effective in the presence of testosterone.</p>\",\"PeriodicalId\":20675,\"journal\":{\"name\":\"Proceedings of the Society for Experimental Biology and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"150\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Society for Experimental Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1046/j.1525-1373.2000.22402.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Society for Experimental Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1046/j.1525-1373.2000.22402.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 150

摘要

最近,人们对广泛使用具有持续雌激素活性的化学品对人类健康的长期影响表示严重关切。在这篇通讯中,我们调查了胎儿暴露于人类摄入的这些化学物质的剂量是否对男性后代的生殖功能有任何长期影响。因此,在妊娠第16-18天,CD-1小鼠分别饲喂平均浓度为100 ng/kg/d、50 μ g/kg/d、50 μ g/kg/d的己烯雌酚(DES)、双酚A (BPA)和aroclor 1016 (aroclor 1016)。还测试了高剂量DES(200微克/千克/天),以便将当前研究的结果与仅使用高剂量的其他研究的结果进行比较。子代在出生后第3天、第21天和第60天进行检查。我们证明BPA、aroclor和低剂量的DES增加了肛门生殖器距离,增加了前列腺大小,减少了附睾重量。没有发现对睾丸重量或大小有影响。在这个剂量下,这些化学物质也永久性地增加了前列腺雄激素受体(AR)的结合活性。这是第一次证明环境化学品程序在普通人群摄入的剂量下永久起作用。另一方面,高剂量的DES产生相反的效果,减少前列腺重量、前列腺AR结合和肛门生殖器距离,从而证实了先前的报道。为了研究上述化学物质的作用是直接作用还是间接作用,我们还在体外测试了这些化学物质对前列腺发育的影响。因此,在妊娠第17天分离的胎儿泌尿生殖窦(UGS)在存在和不存在睾酮(10 ng/ml)的化学物质中培养6天,通过测定组织学标本的大小和分支来监测前列腺生长。结果表明,这些化学物质在睾丸激素存在和不存在的情况下都能诱导前列腺生长。它们还增加了雄激素结合活性。因此,体内研究的结果在体外实验中得到了复制,表明这些化学物质对胎儿生殖器官的发育有直接影响。这是第一次证明雌激素化学物质通过直接干扰胎儿生殖器官而不是通过干扰母体或胎儿内分泌系统来诱导生殖畸形。即使在胎儿没有睾酮的情况下,这些化学物质也能诱发畸形;然而,它们在睾丸激素存在的情况下更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals.

Recently, significant concerns have been placed on the widespread use of chemicals with persistent estrogenic activity for their long-term effects on human health. In this communication, we investigated whether fetal exposure to some of these chemicals at doses consumed by people, has any long-term effect on the reproductive functions of the male offspring. Thus, time-pregnant CD-1 mice were fed diethylstilbestrol (DES), bisphenol A (BPA), and aroclor (aroclor 1016) at an average concentration of 100 ng/kg/day, 50 microg/kg/day, and 50 microg/kg/day, respectively, during Days 16-18 of gestation. A high dose of DES (200 microg/kg/day) was also tested to compare the results of the current study with those of others using the high dose only. The offspring were examined at Day 3, Day 21, and Day 60 following birth. We demonstrated that BPA, aroclor, and the lower dose of DES enhanced anogenital distance, increased prostate size, and decreased epididymal weight. No effect was found on the testicular weight or size. The chemicals also permanently increased androgen receptor (AR) binding activity of the prostate at this dosage. This is the first demonstration that environmental chemicals program AR function permanently at the dosage consumed by the general population. The higher dosage of DES, on the other hand, produced an opposite effect, decreasing prostate weight, prostate AR binding, and anogenital distance, thus confirming the previous reports. To investigate whether the above mentioned effects of the chemicals represent direct or indirect effects, we also tested the effect of the chemicals on prostate development in vitro. Thus fetal urogenital sinus (UGS), isolated at the 17th day of gestation was cultured with the chemicals in the presence and absence of testosterone (10 ng/ml) for 6 days, and prostate growth was monitored by determining the size and branching of the specimen following histology. Results showed that these chemicals induced prostate growth in the presence and absence of testosterone. They also increased androgen-binding activity. Thus, the results of the in vivo studies were reproduced in the in vitro experiments, suggesting a direct effect of these chemicals on the development of fetal reproductive organs. This is the first demonstration that estrogenic chemicals induce reproductive malformation by direct interference with the fetal reproductive organs and not by interfering with the maternal or fetal endocrine system. The chemicals are able to induce malformation even in the absence of fetal testosterone; however, they are more effective in the presence of testosterone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信