{"title":"融合蛋白表达抑制HIV-1复制和传染性,抗病毒-抗整合酶单链可变片段(SFv):病毒内分子疗法","authors":"M BouHamdan, J Kulkosky, L X Duan, R J Pomerantz","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To deliver antiretroviral agents or other foreign proteins into progeny virions and evaluate their inhibitory effect on human immunodeficiency virus type 1 (HIV-1) replication.</p><p><strong>Study design/methods: </strong>HIV-1 encodes proteins in addition to gag, pol, and env, some of which are packaged into virus particles. One essential retroviral enzyme is integrase (IN), which has been used as a target for developing agents that inhibit virus replication. In previous studies, we demonstrated that intracellular expression of single-chain variable antibody fragments (SFvs), which bind to IN, results in resistance to productive HIV-1 infection in T-lymphocytic cells. Because the highly conserved accessory HIV-1 Vpr protein can be packaged within virions in quantities similar to those of the major structural proteins, this primate lentiviral protein may be used as a fusion partner to deliver antiviral agents or other foreign proteins into progeny virions. In these studies, the fusion proteins Vpr-chloramphenicol acetyl transferase (CAT) and Vpr-SFv-IN have been developed. Stable transfectants expressing these fusion proteins were generated from PA317 cells and SupT1 T-lymphocytic cells and analyzed using immunofluorescence microscopy. After challenge of SupT1 cells with HIV-1, p24 antigen expression was evaluated. The incorporation of these fusion proteins were evaluated by immunoprecipitation of virions using a Vpr antibody.</p><p><strong>Results: </strong>Expression of the fusion proteins was confirmed by immunofluorescent staining in PA317 cells transfected with the plasmids expressing Vpr-CAT and Vpr-SFv-IN proteins. Stable transfectants expressing these fusion proteins were generated from SupT1 T-lymphocytic cells. When challenged, HIV-1 replication, as measured by HIV-1 p24 antigen expression, was inhibited in cells expressing Vpr-SFv-IN. It was demonstrated that Vpr-chloramphenicol acetyl transferase (Vpr-CAT and Vpr-SFv-IN proteins can be efficiently packaged into the virions and that Vpr-SFv-IN also decreases the infectivity of virions into which it is encapsidated.</p><p><strong>Conclusions: </strong>An anti-integrase single-chain variable fragment moiety can be delivered into HIV-1 virions by fusing it to Vpr. Vpr-SFv-IN decreases HIV-1 production in human T-lymphocytic cells. The benefits of \"intravirion\" gene therapy include immunization of target cells as well as decreasing infectivity of HIV-1 virions harboring the fusion construct. Thus, this approach to anti-HIV-1 molecular therapies has the potential to increase inhibitory effects against HIV-1 replication and virion spread.</p>","PeriodicalId":80032,"journal":{"name":"Journal of human virology","volume":"3 1","pages":"6-15"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of HIV-1 replication and infectivity by expression of a fusion protein, VPR-anti-integrase single-chain variable fragment (SFv): intravirion molecular therapies.\",\"authors\":\"M BouHamdan, J Kulkosky, L X Duan, R J Pomerantz\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To deliver antiretroviral agents or other foreign proteins into progeny virions and evaluate their inhibitory effect on human immunodeficiency virus type 1 (HIV-1) replication.</p><p><strong>Study design/methods: </strong>HIV-1 encodes proteins in addition to gag, pol, and env, some of which are packaged into virus particles. One essential retroviral enzyme is integrase (IN), which has been used as a target for developing agents that inhibit virus replication. In previous studies, we demonstrated that intracellular expression of single-chain variable antibody fragments (SFvs), which bind to IN, results in resistance to productive HIV-1 infection in T-lymphocytic cells. Because the highly conserved accessory HIV-1 Vpr protein can be packaged within virions in quantities similar to those of the major structural proteins, this primate lentiviral protein may be used as a fusion partner to deliver antiviral agents or other foreign proteins into progeny virions. In these studies, the fusion proteins Vpr-chloramphenicol acetyl transferase (CAT) and Vpr-SFv-IN have been developed. Stable transfectants expressing these fusion proteins were generated from PA317 cells and SupT1 T-lymphocytic cells and analyzed using immunofluorescence microscopy. After challenge of SupT1 cells with HIV-1, p24 antigen expression was evaluated. The incorporation of these fusion proteins were evaluated by immunoprecipitation of virions using a Vpr antibody.</p><p><strong>Results: </strong>Expression of the fusion proteins was confirmed by immunofluorescent staining in PA317 cells transfected with the plasmids expressing Vpr-CAT and Vpr-SFv-IN proteins. Stable transfectants expressing these fusion proteins were generated from SupT1 T-lymphocytic cells. When challenged, HIV-1 replication, as measured by HIV-1 p24 antigen expression, was inhibited in cells expressing Vpr-SFv-IN. It was demonstrated that Vpr-chloramphenicol acetyl transferase (Vpr-CAT and Vpr-SFv-IN proteins can be efficiently packaged into the virions and that Vpr-SFv-IN also decreases the infectivity of virions into which it is encapsidated.</p><p><strong>Conclusions: </strong>An anti-integrase single-chain variable fragment moiety can be delivered into HIV-1 virions by fusing it to Vpr. Vpr-SFv-IN decreases HIV-1 production in human T-lymphocytic cells. The benefits of \\\"intravirion\\\" gene therapy include immunization of target cells as well as decreasing infectivity of HIV-1 virions harboring the fusion construct. Thus, this approach to anti-HIV-1 molecular therapies has the potential to increase inhibitory effects against HIV-1 replication and virion spread.</p>\",\"PeriodicalId\":80032,\"journal\":{\"name\":\"Journal of human virology\",\"volume\":\"3 1\",\"pages\":\"6-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of human virology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of human virology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inhibition of HIV-1 replication and infectivity by expression of a fusion protein, VPR-anti-integrase single-chain variable fragment (SFv): intravirion molecular therapies.
Objectives: To deliver antiretroviral agents or other foreign proteins into progeny virions and evaluate their inhibitory effect on human immunodeficiency virus type 1 (HIV-1) replication.
Study design/methods: HIV-1 encodes proteins in addition to gag, pol, and env, some of which are packaged into virus particles. One essential retroviral enzyme is integrase (IN), which has been used as a target for developing agents that inhibit virus replication. In previous studies, we demonstrated that intracellular expression of single-chain variable antibody fragments (SFvs), which bind to IN, results in resistance to productive HIV-1 infection in T-lymphocytic cells. Because the highly conserved accessory HIV-1 Vpr protein can be packaged within virions in quantities similar to those of the major structural proteins, this primate lentiviral protein may be used as a fusion partner to deliver antiviral agents or other foreign proteins into progeny virions. In these studies, the fusion proteins Vpr-chloramphenicol acetyl transferase (CAT) and Vpr-SFv-IN have been developed. Stable transfectants expressing these fusion proteins were generated from PA317 cells and SupT1 T-lymphocytic cells and analyzed using immunofluorescence microscopy. After challenge of SupT1 cells with HIV-1, p24 antigen expression was evaluated. The incorporation of these fusion proteins were evaluated by immunoprecipitation of virions using a Vpr antibody.
Results: Expression of the fusion proteins was confirmed by immunofluorescent staining in PA317 cells transfected with the plasmids expressing Vpr-CAT and Vpr-SFv-IN proteins. Stable transfectants expressing these fusion proteins were generated from SupT1 T-lymphocytic cells. When challenged, HIV-1 replication, as measured by HIV-1 p24 antigen expression, was inhibited in cells expressing Vpr-SFv-IN. It was demonstrated that Vpr-chloramphenicol acetyl transferase (Vpr-CAT and Vpr-SFv-IN proteins can be efficiently packaged into the virions and that Vpr-SFv-IN also decreases the infectivity of virions into which it is encapsidated.
Conclusions: An anti-integrase single-chain variable fragment moiety can be delivered into HIV-1 virions by fusing it to Vpr. Vpr-SFv-IN decreases HIV-1 production in human T-lymphocytic cells. The benefits of "intravirion" gene therapy include immunization of target cells as well as decreasing infectivity of HIV-1 virions harboring the fusion construct. Thus, this approach to anti-HIV-1 molecular therapies has the potential to increase inhibitory effects against HIV-1 replication and virion spread.