{"title":"由FGFR2单倍不足突变引起的Pfeiffer综合征。","authors":"M Tsukuno, H Suzuki, Y Eto","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations of the fibroblast growth factor receptors (FGFRs) cause several dominantly inherited congenital skeletal disorders and syndromes. Recently, these mutations have been suggested to cause either ligand-independent activation of the receptor or a dominant negative inactivation. The analysis of two Japanese patients with Pfeiffer syndrome and postaxial polydactyly of the hand now shows that both carried the same 1119-2A-to-G transition of the FGFR2 gene and this nonsense mutation caused skipping of exon 9(B) and haploinsufficiency of FGFR2.</p>","PeriodicalId":77201,"journal":{"name":"Journal of craniofacial genetics and developmental biology","volume":"19 4","pages":"183-8"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pfeiffer syndrome caused by haploinsufficient mutation of FGFR2.\",\"authors\":\"M Tsukuno, H Suzuki, Y Eto\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations of the fibroblast growth factor receptors (FGFRs) cause several dominantly inherited congenital skeletal disorders and syndromes. Recently, these mutations have been suggested to cause either ligand-independent activation of the receptor or a dominant negative inactivation. The analysis of two Japanese patients with Pfeiffer syndrome and postaxial polydactyly of the hand now shows that both carried the same 1119-2A-to-G transition of the FGFR2 gene and this nonsense mutation caused skipping of exon 9(B) and haploinsufficiency of FGFR2.</p>\",\"PeriodicalId\":77201,\"journal\":{\"name\":\"Journal of craniofacial genetics and developmental biology\",\"volume\":\"19 4\",\"pages\":\"183-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of craniofacial genetics and developmental biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of craniofacial genetics and developmental biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pfeiffer syndrome caused by haploinsufficient mutation of FGFR2.
Mutations of the fibroblast growth factor receptors (FGFRs) cause several dominantly inherited congenital skeletal disorders and syndromes. Recently, these mutations have been suggested to cause either ligand-independent activation of the receptor or a dominant negative inactivation. The analysis of two Japanese patients with Pfeiffer syndrome and postaxial polydactyly of the hand now shows that both carried the same 1119-2A-to-G transition of the FGFR2 gene and this nonsense mutation caused skipping of exon 9(B) and haploinsufficiency of FGFR2.