{"title":"维生素D与自身免疫:维生素D状态是影响自身免疫性疾病患病率的环境因素吗?","authors":"M T Cantorna","doi":"10.1046/j.1525-1373.2000.22333.x","DOIUrl":null,"url":null,"abstract":"<p><p>The environment in which the encounter of antigen with the immune system occurs determines whether tolerance, infectious immunity, or autoimmunity results. Geographical areas with low supplies of vitamin D (for example Scandinavia) correlate with regions with high incidences of multiple sclerosis, arthritis, and diabetes. The active form of vitamin D has been shown to suppress the development of autoimmunity in experimental animal models. Furthermore, vitamin D deficiency increases the severity of at least experimental autoimmune encephalomyelitis (mouse multiple sclerosis). Targets for vitamin D in the immune system have been identified, and the mechanisms of vitamin D-mediated immunoregulation are beginning to be understood. This review discusses the possibility that vitamin D status is an environmental factor, which by shaping the immune system affects the prevalence rate for autoimmune diseases such as multiple sclerosis, arthritis, and juvenile diabetes.</p>","PeriodicalId":20675,"journal":{"name":"Proceedings of the Society for Experimental Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"274","resultStr":"{\"title\":\"Vitamin D and autoimmunity: is vitamin D status an environmental factor affecting autoimmune disease prevalence?\",\"authors\":\"M T Cantorna\",\"doi\":\"10.1046/j.1525-1373.2000.22333.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The environment in which the encounter of antigen with the immune system occurs determines whether tolerance, infectious immunity, or autoimmunity results. Geographical areas with low supplies of vitamin D (for example Scandinavia) correlate with regions with high incidences of multiple sclerosis, arthritis, and diabetes. The active form of vitamin D has been shown to suppress the development of autoimmunity in experimental animal models. Furthermore, vitamin D deficiency increases the severity of at least experimental autoimmune encephalomyelitis (mouse multiple sclerosis). Targets for vitamin D in the immune system have been identified, and the mechanisms of vitamin D-mediated immunoregulation are beginning to be understood. This review discusses the possibility that vitamin D status is an environmental factor, which by shaping the immune system affects the prevalence rate for autoimmune diseases such as multiple sclerosis, arthritis, and juvenile diabetes.</p>\",\"PeriodicalId\":20675,\"journal\":{\"name\":\"Proceedings of the Society for Experimental Biology and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"274\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Society for Experimental Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1046/j.1525-1373.2000.22333.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Society for Experimental Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1046/j.1525-1373.2000.22333.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vitamin D and autoimmunity: is vitamin D status an environmental factor affecting autoimmune disease prevalence?
The environment in which the encounter of antigen with the immune system occurs determines whether tolerance, infectious immunity, or autoimmunity results. Geographical areas with low supplies of vitamin D (for example Scandinavia) correlate with regions with high incidences of multiple sclerosis, arthritis, and diabetes. The active form of vitamin D has been shown to suppress the development of autoimmunity in experimental animal models. Furthermore, vitamin D deficiency increases the severity of at least experimental autoimmune encephalomyelitis (mouse multiple sclerosis). Targets for vitamin D in the immune system have been identified, and the mechanisms of vitamin D-mediated immunoregulation are beginning to be understood. This review discusses the possibility that vitamin D status is an environmental factor, which by shaping the immune system affects the prevalence rate for autoimmune diseases such as multiple sclerosis, arthritis, and juvenile diabetes.