{"title":"毒理学中的计算机验证:FDA和EPA良好实验室规范的历史回顾。","authors":"D L Brodish","doi":"10.1080/105294199277752","DOIUrl":null,"url":null,"abstract":"<p><p>The application of computer validation principles to Good Laboratory Practice is a fairly recent phenomenon. As automated data collection systems have become more common in toxicology facilities, the U.S. Food and Drug Administration and the U.S. Environmental Protection Agency have begun to focus inspections in this area. This historical review documents the development of regulatory guidance on computer validation in toxicology over the past several decades. An overview of the components of a computer life cycle is presented, including the development of systems descriptions, validation plans, validation testing, system maintenance, SOPs, change control, security considerations, and system retirement. Examples are provided for implementation of computer validation principles on laboratory computer systems in a toxicology facility.</p>","PeriodicalId":77339,"journal":{"name":"Quality assurance (San Diego, Calif.)","volume":"6 4","pages":"185-99"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/105294199277752","citationCount":"2","resultStr":"{\"title\":\"Computer validation in toxicology: historical review for FDA and EPA good laboratory practice.\",\"authors\":\"D L Brodish\",\"doi\":\"10.1080/105294199277752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of computer validation principles to Good Laboratory Practice is a fairly recent phenomenon. As automated data collection systems have become more common in toxicology facilities, the U.S. Food and Drug Administration and the U.S. Environmental Protection Agency have begun to focus inspections in this area. This historical review documents the development of regulatory guidance on computer validation in toxicology over the past several decades. An overview of the components of a computer life cycle is presented, including the development of systems descriptions, validation plans, validation testing, system maintenance, SOPs, change control, security considerations, and system retirement. Examples are provided for implementation of computer validation principles on laboratory computer systems in a toxicology facility.</p>\",\"PeriodicalId\":77339,\"journal\":{\"name\":\"Quality assurance (San Diego, Calif.)\",\"volume\":\"6 4\",\"pages\":\"185-99\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/105294199277752\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality assurance (San Diego, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/105294199277752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality assurance (San Diego, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/105294199277752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computer validation in toxicology: historical review for FDA and EPA good laboratory practice.
The application of computer validation principles to Good Laboratory Practice is a fairly recent phenomenon. As automated data collection systems have become more common in toxicology facilities, the U.S. Food and Drug Administration and the U.S. Environmental Protection Agency have begun to focus inspections in this area. This historical review documents the development of regulatory guidance on computer validation in toxicology over the past several decades. An overview of the components of a computer life cycle is presented, including the development of systems descriptions, validation plans, validation testing, system maintenance, SOPs, change control, security considerations, and system retirement. Examples are provided for implementation of computer validation principles on laboratory computer systems in a toxicology facility.