{"title":"拟南芥中的“双组分”乙烯信号传导。","authors":"C Chang, K Clark, X Wang, R Stewart","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The Arabidopsis ETR1 gene codes for an ethylene hormone receptor that has striking sequence similarity with bacterial two-component regulators. This finding predicts that the ETR1 receptor transduces the ethylene signal through the phosphotransfer mechanisms established for a number of the bacterial regulators. To test this hypothesis, we have performed in vitro assays for ETR1 autokinase activity as well as for transfer of phosphate to the ETR1 receiver. So far, we have not detected either of these activities. Another question we are focusing on is the identity of protein substrates of the ETR1 receptor. Using the yeast two-hybrid system, we have obtained several clones to be subsequently characterized as potential interactors with ETR1.</p>","PeriodicalId":22134,"journal":{"name":"Symposia of the Society for Experimental Biology","volume":"51 ","pages":"59-64"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"'Two-component' ethylene signaling in Arabidopsis.\",\"authors\":\"C Chang, K Clark, X Wang, R Stewart\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Arabidopsis ETR1 gene codes for an ethylene hormone receptor that has striking sequence similarity with bacterial two-component regulators. This finding predicts that the ETR1 receptor transduces the ethylene signal through the phosphotransfer mechanisms established for a number of the bacterial regulators. To test this hypothesis, we have performed in vitro assays for ETR1 autokinase activity as well as for transfer of phosphate to the ETR1 receiver. So far, we have not detected either of these activities. Another question we are focusing on is the identity of protein substrates of the ETR1 receptor. Using the yeast two-hybrid system, we have obtained several clones to be subsequently characterized as potential interactors with ETR1.</p>\",\"PeriodicalId\":22134,\"journal\":{\"name\":\"Symposia of the Society for Experimental Biology\",\"volume\":\"51 \",\"pages\":\"59-64\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposia of the Society for Experimental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposia of the Society for Experimental Biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
'Two-component' ethylene signaling in Arabidopsis.
The Arabidopsis ETR1 gene codes for an ethylene hormone receptor that has striking sequence similarity with bacterial two-component regulators. This finding predicts that the ETR1 receptor transduces the ethylene signal through the phosphotransfer mechanisms established for a number of the bacterial regulators. To test this hypothesis, we have performed in vitro assays for ETR1 autokinase activity as well as for transfer of phosphate to the ETR1 receiver. So far, we have not detected either of these activities. Another question we are focusing on is the identity of protein substrates of the ETR1 receptor. Using the yeast two-hybrid system, we have obtained several clones to be subsequently characterized as potential interactors with ETR1.