{"title":"玉米作为研究植物形态进化分子基础的模式系统。","authors":"J Doebley","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The genetic and molecular bases of morphological evolution in plants are largely unknown. To address questions surrounding this issue, my laboratory has been investigating the evolution of maize from its wild ancestor, teosinte. Our research suggests that a few gene changes of large effect were involved in the evolution of several different traits including plant and ear architecture and kernel color. In cases where gene function could be identified, the genes involved in maize evolution were regulatory in nature. Additional evidence suggests that changes in cis regulatory elements of the regulatory genes rather than changes in protein function underlie the evolution of the traits analyzed. Future work with other plant species, especially wild plants, will be required to test the generality of our observations with maize.</p>","PeriodicalId":22134,"journal":{"name":"Symposia of the Society for Experimental Biology","volume":"51 ","pages":"127-32"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maize as a model system for investigating the molecular basis of morphological evolution in plants.\",\"authors\":\"J Doebley\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The genetic and molecular bases of morphological evolution in plants are largely unknown. To address questions surrounding this issue, my laboratory has been investigating the evolution of maize from its wild ancestor, teosinte. Our research suggests that a few gene changes of large effect were involved in the evolution of several different traits including plant and ear architecture and kernel color. In cases where gene function could be identified, the genes involved in maize evolution were regulatory in nature. Additional evidence suggests that changes in cis regulatory elements of the regulatory genes rather than changes in protein function underlie the evolution of the traits analyzed. Future work with other plant species, especially wild plants, will be required to test the generality of our observations with maize.</p>\",\"PeriodicalId\":22134,\"journal\":{\"name\":\"Symposia of the Society for Experimental Biology\",\"volume\":\"51 \",\"pages\":\"127-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposia of the Society for Experimental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposia of the Society for Experimental Biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maize as a model system for investigating the molecular basis of morphological evolution in plants.
The genetic and molecular bases of morphological evolution in plants are largely unknown. To address questions surrounding this issue, my laboratory has been investigating the evolution of maize from its wild ancestor, teosinte. Our research suggests that a few gene changes of large effect were involved in the evolution of several different traits including plant and ear architecture and kernel color. In cases where gene function could be identified, the genes involved in maize evolution were regulatory in nature. Additional evidence suggests that changes in cis regulatory elements of the regulatory genes rather than changes in protein function underlie the evolution of the traits analyzed. Future work with other plant species, especially wild plants, will be required to test the generality of our observations with maize.