{"title":"UCN-01是一种蛋白激酶C抑制剂,可抑制内皮细胞增殖和血管生成缺氧反应。","authors":"E A Kruger, M V Blagosklonny, S C Dixon, W D Figg","doi":"10.1159/000024514","DOIUrl":null,"url":null,"abstract":"<p><p>Angiogenesis is required for tumor formation and growth; inhibition of angiogenesis is a promising new approach in cancer therapy. UCN-01, a protein kinase C (PKC) inhibitor, induces growth arrest and apoptosis in cancer cells and was recently introduced in a phase I clinical trial. We demonstrate that UCN-01, at concentrations lower than those necessary to inhibit cancer cell growth, inhibit proliferation of human endothelial cells in vitro. Moreover, UCN-01, at concentrations as low as 32 nM, prevent microvessel outgrowth from explant cultures of rat aortic rings. Since hypoxia activates hypoxia-inducible factor (HIF-1)-dependent transcription in cancer cells that, in a paracrine fashion, drive tumor angiogenesis, we investigated the effects of UCN-01 on HIF-1-responsive promoter constructs. We report that, in addition to direct inhibitory effects on endothelial cell growth, UCN-01 abrogates hypoxia-mediated transactivation of HIF-1-responsive promoters in a prostate cancer cell line. We conclude that UCN-01, at clinically relevant concentrations, exerts an anti-neovascularization effect by blocking two important steps in vessel formation: (1) the response of cancer cells to hypoxia, and (2) endothelial cell proliferation.</p>","PeriodicalId":14452,"journal":{"name":"Invasion & metastasis","volume":"18 4","pages":"209-18"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000024514","citationCount":"39","resultStr":"{\"title\":\"UCN-01, a protein kinase C inhibitor, inhibits endothelial cell proliferation and angiogenic hypoxic response.\",\"authors\":\"E A Kruger, M V Blagosklonny, S C Dixon, W D Figg\",\"doi\":\"10.1159/000024514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Angiogenesis is required for tumor formation and growth; inhibition of angiogenesis is a promising new approach in cancer therapy. UCN-01, a protein kinase C (PKC) inhibitor, induces growth arrest and apoptosis in cancer cells and was recently introduced in a phase I clinical trial. We demonstrate that UCN-01, at concentrations lower than those necessary to inhibit cancer cell growth, inhibit proliferation of human endothelial cells in vitro. Moreover, UCN-01, at concentrations as low as 32 nM, prevent microvessel outgrowth from explant cultures of rat aortic rings. Since hypoxia activates hypoxia-inducible factor (HIF-1)-dependent transcription in cancer cells that, in a paracrine fashion, drive tumor angiogenesis, we investigated the effects of UCN-01 on HIF-1-responsive promoter constructs. We report that, in addition to direct inhibitory effects on endothelial cell growth, UCN-01 abrogates hypoxia-mediated transactivation of HIF-1-responsive promoters in a prostate cancer cell line. We conclude that UCN-01, at clinically relevant concentrations, exerts an anti-neovascularization effect by blocking two important steps in vessel formation: (1) the response of cancer cells to hypoxia, and (2) endothelial cell proliferation.</p>\",\"PeriodicalId\":14452,\"journal\":{\"name\":\"Invasion & metastasis\",\"volume\":\"18 4\",\"pages\":\"209-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000024514\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Invasion & metastasis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000024514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invasion & metastasis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000024514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UCN-01, a protein kinase C inhibitor, inhibits endothelial cell proliferation and angiogenic hypoxic response.
Angiogenesis is required for tumor formation and growth; inhibition of angiogenesis is a promising new approach in cancer therapy. UCN-01, a protein kinase C (PKC) inhibitor, induces growth arrest and apoptosis in cancer cells and was recently introduced in a phase I clinical trial. We demonstrate that UCN-01, at concentrations lower than those necessary to inhibit cancer cell growth, inhibit proliferation of human endothelial cells in vitro. Moreover, UCN-01, at concentrations as low as 32 nM, prevent microvessel outgrowth from explant cultures of rat aortic rings. Since hypoxia activates hypoxia-inducible factor (HIF-1)-dependent transcription in cancer cells that, in a paracrine fashion, drive tumor angiogenesis, we investigated the effects of UCN-01 on HIF-1-responsive promoter constructs. We report that, in addition to direct inhibitory effects on endothelial cell growth, UCN-01 abrogates hypoxia-mediated transactivation of HIF-1-responsive promoters in a prostate cancer cell line. We conclude that UCN-01, at clinically relevant concentrations, exerts an anti-neovascularization effect by blocking two important steps in vessel formation: (1) the response of cancer cells to hypoxia, and (2) endothelial cell proliferation.