R Marsilio, R Dall'Amico, G Giordano, L Murer, G Montini, M Ros, L Bacelle, M Plebani, N Dussini, G Zacchello
{"title":"离子对高效液相色谱法快速测定血清和尿液中的肌酐。","authors":"R Marsilio, R Dall'Amico, G Giordano, L Murer, G Montini, M Ros, L Bacelle, M Plebani, N Dussini, G Zacchello","doi":"10.1007/s005990050072","DOIUrl":null,"url":null,"abstract":"<p><p>We report a simple and reliable high performance liquid chromatography method for measuring creatinine in serum and urine. The chromatographic run is performed on a C(18) column after protein precipitation with acetone and addition of cimetidine as an internal standard. The separation is carried out in 20 min at a flow rate of 0.8 ml/min, with a mobile phase consisting of 100 mmol/l sodium dihydrogen phosphate solution, containing 30 mmol/l sodium lauryl sulfate pH 3.0 and acetonitrile (60:36, v/v). The absorbance is monitored at 200 nm. The relationship between creatinine concentration and the creatinine/internal standard peak area is linear up to 1,088 micromol/l. Within-run precision measured at three different creatinine concentrations ranges from 0.89% to 2.34% in serum and from 0.34% to 1.10% in urine. Between-run precision varies from 1.68% to 3.17% in serum and from 1.58% to 1.85% in urine over a wide range of concentrations. Analytical recovery is between 98.71% and 101.25% in serum and between 98.96% and 100.27% in urine. The detection limit is 3.24 micromol/l for a signal-to-noise ratio of 3. The method shows a good linearity with the reference isotope dilution gas chromatography-mass spectrometry procedure (r=0.999), without interferences, even in the presence of high bilirubin concentrations.</p>","PeriodicalId":77180,"journal":{"name":"International journal of clinical & laboratory research","volume":"29 3","pages":"103-9"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s005990050072","citationCount":"23","resultStr":"{\"title\":\"Rapid determination of creatinine in serum and urine by ion-pair high-performance liquid chromatography.\",\"authors\":\"R Marsilio, R Dall'Amico, G Giordano, L Murer, G Montini, M Ros, L Bacelle, M Plebani, N Dussini, G Zacchello\",\"doi\":\"10.1007/s005990050072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report a simple and reliable high performance liquid chromatography method for measuring creatinine in serum and urine. The chromatographic run is performed on a C(18) column after protein precipitation with acetone and addition of cimetidine as an internal standard. The separation is carried out in 20 min at a flow rate of 0.8 ml/min, with a mobile phase consisting of 100 mmol/l sodium dihydrogen phosphate solution, containing 30 mmol/l sodium lauryl sulfate pH 3.0 and acetonitrile (60:36, v/v). The absorbance is monitored at 200 nm. The relationship between creatinine concentration and the creatinine/internal standard peak area is linear up to 1,088 micromol/l. Within-run precision measured at three different creatinine concentrations ranges from 0.89% to 2.34% in serum and from 0.34% to 1.10% in urine. Between-run precision varies from 1.68% to 3.17% in serum and from 1.58% to 1.85% in urine over a wide range of concentrations. Analytical recovery is between 98.71% and 101.25% in serum and between 98.96% and 100.27% in urine. The detection limit is 3.24 micromol/l for a signal-to-noise ratio of 3. The method shows a good linearity with the reference isotope dilution gas chromatography-mass spectrometry procedure (r=0.999), without interferences, even in the presence of high bilirubin concentrations.</p>\",\"PeriodicalId\":77180,\"journal\":{\"name\":\"International journal of clinical & laboratory research\",\"volume\":\"29 3\",\"pages\":\"103-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s005990050072\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of clinical & laboratory research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s005990050072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of clinical & laboratory research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s005990050072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid determination of creatinine in serum and urine by ion-pair high-performance liquid chromatography.
We report a simple and reliable high performance liquid chromatography method for measuring creatinine in serum and urine. The chromatographic run is performed on a C(18) column after protein precipitation with acetone and addition of cimetidine as an internal standard. The separation is carried out in 20 min at a flow rate of 0.8 ml/min, with a mobile phase consisting of 100 mmol/l sodium dihydrogen phosphate solution, containing 30 mmol/l sodium lauryl sulfate pH 3.0 and acetonitrile (60:36, v/v). The absorbance is monitored at 200 nm. The relationship between creatinine concentration and the creatinine/internal standard peak area is linear up to 1,088 micromol/l. Within-run precision measured at three different creatinine concentrations ranges from 0.89% to 2.34% in serum and from 0.34% to 1.10% in urine. Between-run precision varies from 1.68% to 3.17% in serum and from 1.58% to 1.85% in urine over a wide range of concentrations. Analytical recovery is between 98.71% and 101.25% in serum and between 98.96% and 100.27% in urine. The detection limit is 3.24 micromol/l for a signal-to-noise ratio of 3. The method shows a good linearity with the reference isotope dilution gas chromatography-mass spectrometry procedure (r=0.999), without interferences, even in the presence of high bilirubin concentrations.