理解拉希测量:拉希测量的估计方法。

Journal of outcome measurement Pub Date : 1999-01-01
J M Linacre
{"title":"理解拉希测量:拉希测量的估计方法。","authors":"J M Linacre","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Rasch parameter estimation methods can be classified as non-interative and iterative. Non-iterative methods include the normal approximation algorithm (PROX) for complete dichotomous data. Iterative methods fall into 3 types. Datum-by-datum methods include Gaussian least-squares, minimum chi-square, and the pairwise (PAIR) method. Marginal methods without distributional assumptions include conditional maximum-likelihood estimation (CMLE), joint maximum-likelihood estimation (JMLE) and log-linear approaches. Marginal methods with distributional assumptions include marginal maximum-likelihood estimation (MMLE) and the normal approximation algorithm (PROX) for missing data. Estimates from all methods are characterized by standard errors and quality-control fit statistics. Standard errors can be local (defined relative to the measure of a particular item) or general (defined relative to the abstract origin of the scale). They can also be ideal (as though the data fit the model) or inflated by the misfit to the model present in the data. Five computer programs, implementing different estimation methods, produce statistically equivalent estimates. Nevertheless, comparing estimates from different programs requires care.</p>","PeriodicalId":79673,"journal":{"name":"Journal of outcome measurement","volume":"3 4","pages":"382-405"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding Rasch measurement: estimation methods for Rasch measures.\",\"authors\":\"J M Linacre\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rasch parameter estimation methods can be classified as non-interative and iterative. Non-iterative methods include the normal approximation algorithm (PROX) for complete dichotomous data. Iterative methods fall into 3 types. Datum-by-datum methods include Gaussian least-squares, minimum chi-square, and the pairwise (PAIR) method. Marginal methods without distributional assumptions include conditional maximum-likelihood estimation (CMLE), joint maximum-likelihood estimation (JMLE) and log-linear approaches. Marginal methods with distributional assumptions include marginal maximum-likelihood estimation (MMLE) and the normal approximation algorithm (PROX) for missing data. Estimates from all methods are characterized by standard errors and quality-control fit statistics. Standard errors can be local (defined relative to the measure of a particular item) or general (defined relative to the abstract origin of the scale). They can also be ideal (as though the data fit the model) or inflated by the misfit to the model present in the data. Five computer programs, implementing different estimation methods, produce statistically equivalent estimates. Nevertheless, comparing estimates from different programs requires care.</p>\",\"PeriodicalId\":79673,\"journal\":{\"name\":\"Journal of outcome measurement\",\"volume\":\"3 4\",\"pages\":\"382-405\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of outcome measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of outcome measurement","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拉希参数估计方法可分为非迭代法和迭代法。非迭代方法包括完全二分类数据的正态逼近算法(PROX)。迭代方法分为三种类型。逐基准方法包括高斯最小二乘、最小卡方和成对(PAIR)方法。无分布假设的边际方法包括条件最大似然估计(CMLE)、联合最大似然估计(JMLE)和对数线性方法。具有分布假设的边际方法包括边际最大似然估计(MMLE)和缺失数据的正态逼近(PROX)。所有方法的估计都以标准误差和质量控制拟合统计为特征。标准误差可以是局部的(相对于特定项目的测量定义)或普遍的(相对于尺度的抽象起源定义)。它们也可以是理想的(就好像数据符合模型一样),也可以由于与数据中存在的模型不符合而被夸大。五个计算机程序,实现不同的估计方法,产生统计上等效的估计。然而,比较不同项目的估算值需要谨慎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding Rasch measurement: estimation methods for Rasch measures.

Rasch parameter estimation methods can be classified as non-interative and iterative. Non-iterative methods include the normal approximation algorithm (PROX) for complete dichotomous data. Iterative methods fall into 3 types. Datum-by-datum methods include Gaussian least-squares, minimum chi-square, and the pairwise (PAIR) method. Marginal methods without distributional assumptions include conditional maximum-likelihood estimation (CMLE), joint maximum-likelihood estimation (JMLE) and log-linear approaches. Marginal methods with distributional assumptions include marginal maximum-likelihood estimation (MMLE) and the normal approximation algorithm (PROX) for missing data. Estimates from all methods are characterized by standard errors and quality-control fit statistics. Standard errors can be local (defined relative to the measure of a particular item) or general (defined relative to the abstract origin of the scale). They can also be ideal (as though the data fit the model) or inflated by the misfit to the model present in the data. Five computer programs, implementing different estimation methods, produce statistically equivalent estimates. Nevertheless, comparing estimates from different programs requires care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信